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glossary of Symbols 
Symbols taken from letters of the English alphabet 

Symbol 
	

How it is read 
	

What it means 

Sample y intercept of a straight line of best fit 

Sample regression coefficient, slope, or gradient 
of line of best fit 

Confidence interval 

Coefficient of variation 
Combinations of N things taken r at a time 
Mean difference of sample observations 
Degrees of freedom 

Expected value in a cell of contingency table 
Frequency 

Alternate hypothesis 
Null hypothesis 
Sample size 

Population size 

Observed value in a cell of contingency table 

Probability of a success in a single binomial 
trial 

Estimate of the proportion of individuals with 
a certain characteristic 

Probability of a statistic occurring by chance 
Probability that event A occurs 
ith percentile, 90th percentile 
Permutations of N things taken r at a time 
Probability of a failure in a single binomial trial 
Sample correlation coefficient 

Sample standard deviation 
Sample variance 

Standard deviation of differences of sample 
observations 

Pooled standard deviation 

Sample standard error of the mean; standard 
deviation of sampling distribution 

Standard error of the regression coefficient 
Standard error of the mean (same as s z, or o-0 
Standard error of the difference of 
two proportions     

a 

CI 

CV 

C(N,r) 

d 
df 
E 

f 
Ha  or Hi 

 Ho  

11 

N 

0 

P 

P(A) 

Pi, P90 

P(N,r) 

r 

C of N comma r 
d-bar 

H sub a or H sub one 
H sub zero 

p value 

probability of A 

P sub i, P sub ninety 
P of N comma r  

s squared 
s sub d 

s sub p 

s sub x-bar 

SE (b) 

SE (x) 

E(Pi 	 P2) 

standard error of b 

standard error of x-bar 
standard error of p-one 
minus p-two    



What it means 

Standard error of the difference of 
bar minus x-two-bar the two means 

t value from Student's t distribution 

t value corresponding to a specified tail area a 

Sample mean; mean of x values 

Mean of y values 

Standard normal deviate 

of 
	

How it is read 

X2) 
	 standard error of x-one- 

t value 

t sub alpha 

X-bar 

Y-bar 

Z score 

ols taken from letters of the Greek alphabet 

alpha 

alpha error 

beta error 

alpha 

beta 
chi-square (pronounced 
"ki-square") 
delta 

delta (capital delta) 

mu 

mu sub zero 

mu sub x-bar 

sigma 

sigma squared 
sigma sub x bar 

the sum of (capital sigma) 

rho 

iematical symbols 

absolute value of x 

n factorial 

greater than 
greater than or equal to 

less than 

less than or equal to 

not equal to 

Significance level 
Type I error in hypothesis testing 

Type II error in hypothesis testing 

y intercept of population regression line 

Slope of population regression line 

Test statistic for contingency table 

Mean difference of population observations 

Ax means change in x 

Population mean 

Baseline value of kt, 

Mean of sampling distribution 

Population standard deviation 

Population variance 
Standard error of the mean 

Sum the values that follow 

Population correlation coefficient 

Take the numerical value of x, ignoring the sign 

n(n — 1)(n — 2) • • 3 • 2 • 1 
Number on left is larger than number on right 

Number on left is larger than or equal to 
number on right 
Number on left is smaller than number on right 

Number on left is smaller than or equal to 
number on right 
The two values on either side of the symbol are 
not the same value 

)r 

)r 
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Preface 

Statistics is a peculiar subject. Unaccountably, many students who handle their 
toughest studies with aplomb view statistics as a nearly insurmountable bar-
rier. Perhaps this derives from the inherent difficulty of viewing the world in 
probabilistic terms, or from the underlying mathematics, or from the often ab-
struse mode of presentation. I hope that Basic Statistics for the Health Sciences is a 
step toward overcoming these problems. 

The purpose of this book is to present some of the concepts, principles, and 
methods of statistics in as clear and understandable a manner as possible. The 
level is appropriate to students with a limited mathematical background but for 
whom a working knowledge of statistics is indispensable. In my own teaching 
I have found this approach to be particularly effective with students of medi-
cine, nursing, public health, and the allied health sciences. 

Because statistics allows us to use data to gain insight into a problem, we 
emphasize understanding rather than mastering a statistical technique. There-
fore, the underlying objective of this book is to introduce concepts intuitively 
rather than via rigorous mathematics. 

Certain features of this book's organization have proven to be especially ef-
fective. These include—in each chapter—an outline, learning objectives (which 
may easily be used as review questions), highlighting of important terms, a con-
cluding statement, and a list of newly introduced vocabulary. My colleagues 
and I have found these to be simple but effective aids for any student striving 
for mastery of the material. Nearly all the examples and exercises are adapted 
from actual data in health research, so students are quite likely to appreciate the 
relevance of the material to their chosen field. My own extended research is re-
flected in the recurring theme of these pages—the effect our lifestyle choices 
have on our health. 

This text goes somewhat beyond the coverage of most elementary statistics 
books by including a number of special topics for students of different disci-
plines and interests. Some key principles of epidemiology are introduced; the 
topics of age-adjustment and relative risk are covered. A chapter on probability, 
often reserved for more sophisticated treatments, is included. By understand-
ing probability, the student gains a better insight into several of the subsequent 
topics. There are chapters devoted to correlation, regression, and analysis of 

xv 
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variance, as well as to distribution-free methods, a subject that appears to be 
gaining favor rapidly. Chapters on vital statistics and life tables are included to 
meet the special needs of medical and public health students. Two important 
subjects—how to perform a health survey and how to evaluate a research 
report—should be of real benefit to those who will carry out or use the results 
of research projects. 

This text can be used for a course of three quarter units or three semester 
units, depending on the topics the instructor chooses to emphasize. It contains 
the material I have found to be uncommonly effective in motivating students' 
interest in statistics, so they begin to see it as a very satisfying form of detective 
work. The book should be especially useful for the student who enters the 
course with some lingering doubts about his or her ability to master statistics or 
for the student who initially questions the relevance of studying the subject. 

Changes in the Third Edition 

We have been delighted with the positive reception of this text by individuals 
from diverse institutions across the country—students, instructors, and review-
ers. Clearly, the strong public health and health sciences emphasis of this text 
has become an outstanding feature of this book. This third edition builds on the 
philosophy and pedagogic approaches of the first two editions. It includes im-
provements that we hope will make this new edition even more useful in meet-
ing the teaching objectives of instructors and will make it even easier for stu-
dents to comprehend. Major changes for the third edition include the following: 

• The number and range of exercises have been expanded. Each chapter 
now contains several additional exercises, some using large data sets. 

• Several topics have been added, including Bayes theorem, Kruskal–Wallis 
ANOVA, and box and whisker plot. 

• Most of the chapters and selected end-of-chapter exercises have been re-
vised and updated. 

My experience with the second edition of the text has been gratifying. May 
your experience with this new edition be gratifying as well. 

Writing a textbook is a labor of love—characterized by both pleasure and 
agony. Its completion follows the convergence of a number of factors: the idea, 
the encouragement of friends and colleagues, and the cooperation of assistants. 
I wish especially to acknowledge the inspiring influence of my teachers—John 
W. Fertig, Chin Long Chiang, and Richard D. Remington—and my mentor, Wil-
fred J. Dixon. They demonstrated to me that statistics, an often abstruse subject, 
can indeed be taught in a clear and understandable fashion. The manuscript 
benefited from the professional insights of Paul S. Anderson, Jr., of the Univer-
sity of Oklahoma at Oklahoma City, Gary R. Cutter and Richard A. Windsor of 
the University of Alabama at Birmingham, and Patricia W. Wahl of the Univer-
sity of Washington. 
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I would like to thank the many students, instructors, and special reviewers 
for their thoughtful and helpful suggestions on improving this edition— 
specifically, K. M. Camarata, Eastern Kentucky University; Phyllis T. Croisant, 
Eastern Illinois University; James E. Hornak, Central Michigan University; and 
Paul E. Leaverton, University of South Florida. In particular, I am especially 
grateful to Steve Bohnenblust, Mankato State University, whose extensive work 
on this revision has been invaluable. I wish also to acknowledge the coopera-
tion of the various publishers who generously granted permission to reproduce 
tables from their books. 

J.W.K. 



Statistics and How They Are Used 

Chapter Outline 

1.1 The Meaning of Statistics 
Formally defines the term statistics and illustrates by describing what 
a statistician does 

1.2 The Uses of Statistics 
Shows how descriptive statistics are used to describe data and how 
inferential statistics are used to reach conclusions from the analysis 
of the data 

1.3 Why Study Statistics? 
Explains how the study of statistics is important for research, for 
writing publishable reports, for understanding scientific journals, 
and for discriminating between appropriate and inappropriate uses 
of statistics 

1.4 Sources of Data 
Discusses surveys and experiments, two main sources of data, and 
further classifies surveys as retrospective or prospective, and de-
scriptive or analytical 

1.5 Clinical Trials 
Describes the use of a clinical trial to determine the value of a new 
drug or procedure 

1.6 Planning of Surveys 
Previews some hints on how to maximize the value of survey data 

1.7 How to Succeed in Statistics 
Offers some tips on getting the most out of class and other resources 

Learning Objectives 

After studying this chapter, you should be able to 

1. Define "statistics" 

2. List several reasons for studying statistics 

3. Distinguish clearly between 
a. descriptive and inferential statistics 
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b. surveys and experiments 
c. retrospective and prospective studies 
d. descriptive and analytical surveys 

4. Define "bias" 

5. Describe the purpose and components of a clinical trial 

THE MEANING OF STATISTICS 

One way to understand statistics is to consider two basic questions: What does 
the term statistics mean? What do statisticians do? Once we have the answers to 
these questions, we can delve into how statistics are used. 

What Does "Statistics" Mean? 

The word statistics has several meanings. It is frequently used to refer to 
recorded data such as the number of traffic accidents, the size of enrollment, or 
the number of patients visiting a clinic. Statistics is also used to denote charac-
teristics calculated for a set of data—for example, mean, standard deviation, 
and correlation coefficient. In another context, statistics refers to statistical 
methodology and theory. 

In short, statistics is a body of techniques and procedures dealing with the 
collection, organization, analysis, interpretation, and presentation of informa-
tion that can be stated numerically. 

What Do Statisticians Do? 

A statistician is usually a member of a group that works on challenging scien-
tific tasks. Frequently engaged in projects that explore the frontiers of human 
knowledge, the statistician is primarily concerned with developing and apply-
ing methods that can be used in collecting and analyzing data. He or she may 
select a well-established technique or develop a new one that may provide a 
unique approach to a particular study, thus leading to valid conclusions. Specif-
ically, the statistician's tasks are as follows: 

1. To guide the design of an experiment or survey. A statistician should be con-
sulted in the early planning stages so that an investigation can be carried 
out efficiently, with a minimum of bias. Once data are collected, it is too 
late to plan ahead. By then, it is impossible to impose an appropriate sta-
tistical design or compensate for the lack of a randomly selected sample. 

2. To analyze data. Data analysis may take many forms, such as examining the 
relationships among several variables, describing and analyzing the vari-
ation of certain characteristics (e.g., blood pressure, temperature, height, 
weight), or determining whether a difference in some response is sig-
nificant. 
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3. To present and interpret results. Results are best evaluated in terms of prob-
ability statements that will facilitate the decision-making process. Main-
land (1963:3) defines statistics as the "science and art of dealing with 
variation in such a way as to obtain reliable results." The art of statistics 
is especially pertinent to this task and involves skills usually acquired 
through experience. 

Because the interpretation of statistics is more of an art than a science, it is 
all too easy to emphasize some inappropriate aspect of the results and conse-
quently misuse statistics. An interesting little book, How to Lie with Statistics 
by Darrell Huff (1954), provides an enlightening and entertaining view of the 
problems involved in presenting statistics. 

In accomplishing the previously-mentioned three tasks, a statistician gener-
ally reaches the major objective of statistics: to make an inference about a pop-
ulation being studied based on data collected from a sample drawn from this 
population. 

THE USES OF STATISTICS 

It is helpful to distinguish between the two major categories of statistics. 
Descriptive statistics deal with the enumeration, organization, and graphical 
representation of data. Inferential statistics are concerned with reaching con-
clusions from incomplete information—that is, generalizing from the specific. 
Inferential statistics use information obtained from a sample to say something 
about an entire population. 

An example of descriptive statistics is the decennial census of the United 
States, in which all residents are requested to provide such information as age, 
sex, race, and marital status. The data obtained in such a census can then be 
compiled and arranged into tables and graphs that describe the characteristics 
of the population at a given time. An example of inferential statistics is an opin-
ion poll, such as the Gallup Poll, which attempts to draw inferences as to the 
outcome of an election. In such a poll, a sample of individuals (frequently fewer 
than 2000) is selected, their preferences are tabulated, and inferences are made 
as to how more than 80 million persons would vote if an election were held 
that day. 

Statistical methods provide a logical basis for making decisions in a variety 
of areas when incomplete information is available. Here are some examples of 
scientific questions to which the application of statistical methodology has been 
useful: 

1. How can researchers test the effectiveness of a new vaccine against the 
common cold? 

2. How effective is a trial that seeks to reduce the risk of coronary heart 
disease? 
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3. How effective have several family planning programs been? 
4. How much, if at all, does use of oral contraceptives increase a woman's 

chances of developing a thromboembolism? 

The three specific studies described next further amplify the application of 
statistics. 

Smoking During Pregnancy A pioneering study of the effects on the newborn in-
fant of smoking during pregnancy was reported by Simpson (1957). She exam-
ined the data of 7499 patients in three hospitals in and near Loma Linda Uni-
versity and found from the records that prematurity rates increased with the 
number of cigarettes smoked per day. A more recent review of the various stud-
ies on this topic is given by the Surgeon General's Report on Smoking and 
Health (U.S. Department of Health, Education, and Welfare, 1979). The princi-
pal conclusion of that report is: "Maternal smoking during pregnancy has a sig-
nificant adverse effect upon the well-being of the fetus and the health of the 
newborn baby." 

Health Practices and Mortality Belloc (1973) reported on a very interesting study 
conducted by the Human Population Laboratory of the California State Health 
Department on a representative sample of 6928 Alameda County residents. She 
concluded that there was a striking inverse relationship between the number of 
lifestyle practices (not smoking, not being obese, not drinking, being physically 
active, eating regularly) and mortality. 

The Multiple Risk Factor Intervention Trial (MRFIT) Paul (1976) reported on a na-
tional study of the primary prevention of coronary heart disease. The study's 
approach was to determine whether the risk of coronary disease in middle-aged 
men can be significantly reduced through intervention. This intervention en-
tailed simultaneously reducing their serum cholesterol levels, treating any high 
blood pressure, and encouraging the men to stop smoking. The seven-year trial 
involved 20 clinical centers and 12,866 subjects, all initially healthy but at high 
risk for coronary disease. At random, half the men were assigned to be followed 
through the intervention program and the other half through their usual med-
ical care, which included annual physicals and lab tests. The report of the re-
sults was prepared by the MRFIT research group and appeared in the Journal of 
the American Medical Association (1982; 248:1465-1477). Investigators observed 
that the risk factor levels declined in both groups. Furthermore, during the 
seven-year follow-up period, the mortality rates for coronary heart disease 
(CHD) were 17.9 deaths per 1000 for the intervention group and 19.3 deaths per 
1000 for the untreated group. This was a nonsignificant difference, and the lack 
of a positive result has generated considerable discussion. There may be more 
plausible reasons for this outcome: (1) it is difficult to show a significant drop 
due to an intervention when the entire country is experiencing a multidecade 
decline in CHD rates; (2) the intervention strategy may not have been drastic 
enough to show a significant difference; and (3) because a report of the assessed 
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risk factors was sent to the physicians of those in the untreated group, members 
of that group may have benefited from whatever "treatment" their physicians 
had prescribed for them. 

Because skills, facilities, and funds are never unlimited, the problem arises as 
to how to extract the maximum amount of information in the most efficient 
manner. With the aid of statistics, it is usually possible to achieve greater preci-
sion at minimum cost by effectively using the resources available. 

WHY STUDY STATISTICS? 

Many students ask: "Why should I study statistics?" or "How useful will statis-
tics be in my future career?" The answers to these questions depend on one's 
career objectives. 

A knowledge of statistics is essential for people going into research manage-
ment or graduate study in a specialized area. Persons active in research will find 
that a basic understanding of statistics is useful not only in the conduct of their 
investigations, but also in the effective presentation of their findings in papers, 
in reports for publication, and at professional meetings. Some proficiency in sta-
tistics is helpful to those who are preparing, or may be called upon to evaluate, 
research proposals. Further, a person with an understanding of statistics is bet-
ter able to decide whether his or her professional colleagues use their statistics 
to illuminate or merely to support their personal biases; that is, it helps one to 
decide whether the claims are valid or not. 

A knowledge of statistics is essential for persons who wish to keep their ed-
ucation up-to-date. To keep abreast of current developments in one's field, it is 
important to review and understand the writings in scientific journals, many of 
which use statistical terminology and methodology. 

An understanding of statistics can help anyone discriminate between fact 
and fancy in everyday life—in reading newspapers and watching television, 
and in making daily comparisons and evaluations. 

Finally, a course in statistics should help one know when, and for what pur-
pose, a statistician should be consulted. 

SOURCES OF DATA 

In observing various phenomena, we are usually interested in obtaining infor-
mation on specific characteristics—for instance, age, weight, height, marital 
status, or smoking habits. These characteristics are referred to as variables; the 
values of the observations recorded for them are referred to as data. Data are the 
raw materials of statistics. They are derived from incredibly diverse sources. 
Knowing our sources provides clues to our data—their reliability, their validity, 
and the inferences we might draw. 
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Surveys and Experiments 

Data may come from anywhere: observational surveys, planned surveys, or 
experiments. The two fundamental kinds of investigations are surveys and ex-
periments. Data from a survey may represent observations of events or phe-
nomena over which few, if any, controls are imposed. The study of the effects of 
the explosion of the atomic bomb on the inhabitants of Hiroshima and Nagasaki 
is an example of a survey. In this case, the radiation to which the survivors were 
exposed (referred to as "treatment" in statistics) was in no way controlled or as-
signed. By contrast, in an experiment, we design a research plan purposely to 
impose controls over the amount of exposure (treatment) to a phenomenon 
such as radiation. The distinction between them is that an experiment imposes 
controls on the methods, treatment, or conditions under which it is performed, 
whereas in a survey such controls are seldom possible. 

A classic example of an experiment is the Veterans Administration Coopera-
tive Study. It began in 1963 and involved 523 hypertensive men who were pa-
tients in 16 Veterans Administration hospitals (Veterans Administration, 1970, 
1972). The study demonstrated that oral hypertensive medications, judiciously 
administered, could significantly reduce blood pressure levels, whereas place-
bos (substances or treatments that have no therapeutic value) had no effect on 
blood pressure. 

Although experimental investigations are preferable to surveys, in some 
cases there are reasons for not conducting them—for instance, ethical reasons, 
as when a beneficial treatment may be withheld from one of the groups; or ad-
ministrative reasons, as when an experiment may seriously disrupt the estab-
lished routine of patients' care. 

Health researchers conduct surveys on human populations all the time. 
These surveys may be categorized as retrospective or prospective. 

Retrospective Studies 

Retrospective studies (commonly referred to as case-control studies) gather 
past data from selected cases and controls to determine differences, if any, in the 
exposure to a suspected factor. In retrospective studies, the researcher identifies 
individuals with a specific disease or condition (cases) and also identifies a 
comparable sample without that disease or condition (controls). The purpose of 
the comparison is to determine if the two groups differ as to their exposure to 
some specific factor. An example is a study that compares the smoking habits of 
women who bore premature babies to those of women who carried their preg-
nancies to term. Given the comparative data, the researcher then seeks to deter-
mine whether there is a statistical relation between the possible stimulus vari-
able, or causative factor (smoking), and the outcome variable (prematurity). 

A disadvantage of retrospective studies is that the data were usually col-
lected for other purposes and may be incomplete. Surveys frequently fail to in-
clude relevant variables that may be essential to determine whether the two 
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Table 1.1 Generalized 2 x 2 Table 

Outcome Variable 

Stimulus 
Variable 

With 
Disease 

Without 
Disease Total 

Present a b a + b 

Absent c d c + d 

Total a + c b + d 

groups studied are comparable. This absence of demonstrated comparability 
between cases and controls may envelop the results in a cloud of doubt. In ad-
dition, because of the historical nature of such records or the necessity of rely-
ing op memory, serious difficulties may attend the selection of appropriate con-
trols. Unknown biases frequently hinder such studies. 

The major advantages of retrospective studies are that they are economical 
and are particularly applicable to the study of rare diseases. Such studies also 
make it possible to obtain answers relatively quickly because the cases are usu-
ally easily identified. 

In retrospective studies, sample selection begins with the outcome variable 
(disease). The researcher looks back in time to identify the stimulus variable 
(factor). In prospective studies (discussed next), the stimulus variable is known 
in advance and the study population is followed through time, while occur-
rences of the outcome are noted. A generalized 2 x 2 table may be used to il-
lustrate the study design (Table 1.1). This table is applicable to both retrospec-
tive and prospective studies and is called a fourfold table because it consists of 
four elements, a, b, c, and d: 

Element a represents persons with the stimulus variable who developed the 
disease. 

Element b represents persons with the stimulus variable who did not de-
velop the disease. 

Element c represents persons without the stimulus variable who developed 
the disease. 

Element d represents persons without the stimulus variable who did not 
develop the disease. 

Prospective Studies 

Prospective studies are usually cohort studies, in which one enrolls a group of 
healthy persons and follows them over a certain period to determine the 
frequency with which a disease develops. The group is divided statistically 
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according to the presence or absence of a stimulus variable (e.g., smoking his-
tory). This is done because the group cannot, of course, be divided according to 
a disease that has not yet occurred (e.g., the presence or absence of lung cancer). 
The prospective study then compares the proportion of smokers (exposed co-
hort) who developed lung cancer to the proportion of nonsmokers (nonexposed 
cohort) who developed the same disease. 

The prime advantage of prospective studies is that they permit the accurate 
estimation of disease incidence in a population. They make it possible to in-
clude relevant variables, such as age, sex, and occupation, that may be related 
to the outcome variable. Furthermore, they permit data collection under uni-
form conditions: Data are obtained for specified reasons and there are better op-
portunities to make appropriate comparisons while limiting or controlling the 
amount of bias, which may be considered systematic error. The disadvantages of 
prospective studies are that they take considerable time and are expensive in 
studying diseases of low incidence. 

A good example of a prospective study is one that seeks to determine if there 
are long-term health effects on women who take oral contraceptives. Prospec-
tive studies do not prove a causal relationship with the factor under study 
because the characteristics (such as smoking or not smoking) are not randomly 
assigned and persons with an inherent tendency to lung cancer are arguably 
more likely to be included in the smoking group. Nevertheless, such studies 
provide the best mechanism for providing "causal" evidence. The results 
should be taken as important—though less than perfect—scientific evidence. In 
some studies, such as those of smoking and lung cancer, the relationship, al-
though not proven, may well be established beyond a reasonable doubt. On this 
point, MacMahon and Pugh (1970:22) aptly state, "When the derivation of ex-
periential evidence is either impracticable or unethical, there comes a point in 
the accumulation of evidence when it is more prudent to act on the basis that 
the association is causal rather than to await further evidence." 

Comparison of Ratios 

For each type of study, it is instructive to note the different ratios that can be 
constructed and the questions that can be answered. For retrospective studies the 
ratios to be compared (using the notation of Table 1.1) are 

a 

a + c 
and 

b 

b + d 

By comparing them we can answer the question: Were mothers of premature 
infants more likely to have been smokers than mothers of normal infants? 

For prospective studies the ratios to be compared are 

a 
and 

a + b 	 c + d 
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This comparison answers the question: Which group has the higher frequency 
of premature infants—mothers who smoke or mothers who do not smoke? 

Descriptive and Analytical Surveys 

Retrospective surveys are usually descriptive. Such surveys provide estimates 
of a population's characteristics, such as the proportion of individuals who had 
a physical examination during the last 12 months. Prospective surveys may 
be descriptive or analytical. In an analytical survey one seeks to determine the 
degree of association between a variable and a factor in the population. An 
example is the relationship between having (or not having) regular physical ex-
aminations and some measure of health status. 

CLINICAL TRIALS 

A clinical trial is a carefully designed experiment that seeks to determine, 
under controlled conditions, the effectiveness of a new drug or treatment 
method. Clinical trials are used extensively today by investigators seeking to 
determine the effectiveness of newly proposed drugs, such as cancer chemo-
therapeutic agents. One of the pioneer clinical trials evaluated the effectiveness 
of streptomycin in the treatment of tuberculosis (Medical Research Council, 
1948). Other clinical trials have been used to evaluate polio vaccine, ACTH for 
multiple sclerosis, tolbutamide for the control of diabetes, and hundreds of new 
cancer chemotherapeutic agents. 

In short, a clinical trial involves a comparison of two or more comparable 
groups of patients. The treatment group, which receives a potentially thera-
peutic agent, is compared with a similar control group, which instead receives 
a placebo or the standard therapeutic treatment. It is important that the two 
groups of patients be comparable. To ensure that they are, patients are usually 
randomly allocated—that is, each patient is given an equal chance of being as-
signed to the treatment or the control group. 

The investigator is interested not only in establishing comparable groups, 
but also in limiting the amount of bias entering a trial. One way to do this is to 
design the experiment as a single-blind study. In this type of experiment, the 
patient does not know whether he or she is in the treatment or the control 
group. An even better way is to design it as a double-blind study. Here, neither 
the patient nor the experimenter knows to which group the patient is assigned. 
A neutral party keeps the code as to who's who and discloses it only at the end 
of data gathering. Numerous clinical trials have failed because bias was not ad-
equately controlled. Bias falls into a number of categories, and is discussed fur-
ther in Chapter 17. 

A clinical trial demands an appropriate control group. One such group is a 
concurrent control group, which is selected at the same time and from the same 
pool of individuals as the treatment group. Because the use of controls at least 
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doubles the size of the experiment, some investigators have tried alternatives, 
such as historical controls. Historical controls are control subjects that are se-
lected from a set of records after a study has been completed. But historical con-
trols present problems because of changes in the population over time and be-
cause there is no way to control selection bias. Volunteer groups have also been 
used as controls. Because such a group is self-selected, however, it is usually 
atypical of the rest of the population, thus limiting the inferences that may be 
drawn. Some investigators have chosen controls from patients in certain hospi-
tal wards. This method presents problems of selection for a particular kind of 
disease or condition. It may overrepresent patients hospitalized for a long time 
or those recently admitted. Because a clinical trial is, in actuality, an experiment 
on human beings, a number of ethical issues also arise. For instance, is it ethical 
to withhold a probably effective mode of treatment from a control group? For 
further discussion of such problems see Hill (1963) and Colton (1974). For a 
step-by-step procedure of preparing a protocol for a clinical trial, see Kuzma 
(1970). 

Clinical trials as used today have developed since World War II and are ex-
tremely helpful in distinguishing between effective and ineffective agents. Had 
clinical trials been used more commonly in the early days of medicine, the fu-
tility of such drastic and dangerous methods as bloodletting and purging 
would have been exposed early on. 

In summary, then, the salient features of a clinical trial are 

1. Simultaneous treatment and control groups 

2. Subjects who are randomly allocated to the two groups 

3. Use of a double-blind technique when feasible 

Example: The Salk Vaccine Clinical Trial 

The 1954 clinical trial of the Salk poliomyelitis vaccine is a good example of how 
a clinical trial can be used to solve an important public health problem. At that 
time, outbreaks of polio were unpredictable. Because the disease caused paral-
ysis and frequently death, such outbreaks were of great concern to both parents 
and children. Enter Dr. Jonas Salk. Salk developed a vaccine that proved safe 
and effective in a laboratory setting in producing antibodies against polio. The 
question to be answered then was whether this promising vaccine could pre-
vent polio in exposed individuals. 

To find the answer, a clinical trial was set up. Statisticians recommended that 
at least 400,000 children be included in the study: 200,000 children in the treat-
ment group and 200,000 children in the control group. The large numbers were 
needed to provide an adequate number of cases in order to get valid results. An 
adequate number could be obtained only with these large sample sizes because 
the incidence rate of polio cases was estimated to be 35 per 100,000 children. The 
400,000 children in the study were randomly assigned to either a treatment 
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group (the group receiving the active Salk vaccine) or to a control group (the 
group receiving a placebo, which consisted of an injection of salt dissolved in 
water). Because of this precaution—the addition of the double-blind feature— 
neither the children nor the administrators of the treatment knew which child 
received the vaccine and which received the placebo. Furthermore, those who 
examined the children to determine whether they had contracted polio were 
also unaware of their patients' group status. 

It was important that the study group be randomly allocated so that the two 
groups would be comparable. If this procedure had not been followed, it is 
likely that the treatment group would have been biased because children from 
higher socioeconomic levels, whose parents were aware that they were at 
greater risk, would more likely have participated. Such children were at greater 
risk because their environment was more hygienic than that of children from 
lower socioeconomic strata, and they were less likely to have developed an im-
munity to the disease. 

The tabulation of the collected data indicated that the incidence rate of cases 
in the treatment group was 28 per 100,000 versus 71 per 100,000 in the control 
group. Statistical analysis of these rates showed that the Salk polio vaccine was 
indeed effective, and that the clinical trial (one of the largest ever) and its cost 
($5 million) were justified. 

Some students may be concerned about the ethical problem of withholding 
treatment from half of the study group. However, before the clinical trial, there 
was no definite proof of the effectiveness of the Salk polio vaccine, and, without 
a control group, there was no available scientific, rigorous procedure by which 
to provide definitive answers. A clinical trial had to be carried out. Once it 
was—and the evidence was convincing—the public health authorities had the 
evidence necessary to mount a national campaign to virtually eradicate polio. 
Their efforts were successful—in 1952 there were about 60,000 cases of polio; 
today there are hardly any (Thomas, 1955). 

PLANNING OF SURVEYS 

The previous section discussed several types of medical surveys that may give 
rise to data. Before starting a survey, it is essential to formulate a clear plan of 
action. An outline of such a plan, including the major steps that should be fol-
lowed in pursuing the investigation, is given in Chapter 17. 

HOW TO SUCCEED IN STATISTICS 

Studying statistics is somewhat analogous to studying a foreign language be- 
cause a considerable number of new terms and concepts need to be learned. We 
have found that students who do this successfully scan the chapter outline, read 
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the conclusion and the vocabulary list, and review the learning objectives be-
fore coming to class. Also, as soon as possible after the class, they study and 
learn the relevant terms, concepts, principles, and formulae in the textbook. 
After doing the assigned exercises, they try to reformulate the objectives as 
questions and then answer them. We suggest that you do the same. The ques-
tions you form from the objectives also serve as excellent review questions you 
can use to help prepare for examinations. If you are not sure of some of these ob-
jectives, you may need to go back and reread the chapter or do additional exer-
cises. Doing as many exercises as possible is one of the best ways to learn statis-
tics. If anything is still not clear, make up questions you can ask at the tutorial 
session or in class. 

In addition, read essays dealing with the application of statistics to a variety 
of fields. An excellent and readable book is Statistics: A Guide to the Unknown by 
Judy M. Tanur et al. (1978). Also, because many of the exercises involve a large 
number of measurements, you may find a calculator helpful. Finally, keep in 
mind that students who are successful in mastering statistics do not allow 
themselves to get behind. 

Conclusion 

A statistician designs efficient and unbiased investigations that provide data 
that he or she then analyzes, interprets, and presents to others so that decisions 
can be made. To do this work, the statistician uses techniques that are collec-
tively called statistics. Students of statistics learn these techniques and how they 
may relate to their work and everyday life. Particularly they learn how to make 
correct inferences about a target population of interest based on sample data. 
Students need to know not only how to understand the scientific literature of 
their field but also how to select from various kinds of investigations the one 
that best fits their research purpose. 

Vocabulary List 

analytical survey 
bias 
case-control study 
census 
clinical trial 
cohort study 
control group 
data 
descriptive statistics 

descriptive survey 
double-blind study 
experiment 
inferential statistics 
outcome variable 
placebo 
prospective study 
random allocation 
retrospective study 

single-blind study 
statistics 
stimulus variable 
survey 
treatment group 
two-by-two table 

(2 x 2 table) 
variable 
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Exercises 

1.1 	 Suggest and describe briefly a survey and its objectives. 
a. Is it a descriptive or an analytical survey? 
b. List some potential sources of bias. 

1.2 	 Suggest and describe an experiment. 
a. What research question are you testing? 
b. What is the "treatment" in this experiment? 
c. List some potential sources of bias. 

1.3 	 Suggest a clinical trial for some phenomenon of interest to you, such as drug use 
or exercise. 
a. Describe how you would select and allocate cases. 
b. What would be the treatment? 
c. What would be the outcome variable for determining the effectiveness of the 

treatment? 
d. What double-blind feature would you include, if any? 

1.4 	 Find a newspaper or magazine article that uses data or statistics. 
a. Were the data obtained from a survey or an experiment? 
b. Is the study descriptive or inferential? 
c. What research question was the author trying to answer? 
d. How did he or she select the cases? What population do the cases represent? 
e. Was there a control group? How were the control subjects selected? 
f. Are possible sources of bias mentioned? 
g. If conclusions are stated, are they warranted? 
h. Make a copy of the article to turn in with your answers to these questions. 

1.5 	 Define: bias, clinical trial, experiment, survey, and statistics. 

1.6 	 Explain what is meant by 
a. descriptive statistics 
b. inferential statistics 

1.7 	 Answer the following questions regarding the Salk vaccine trial: 
a. Why was such a large trial necessary? 
b. Why was a control group needed? 
c. Why is it important to include a double-blind feature? 
d. If volunteers were used in this trial rather than a random sample of individu-

als, of what value would be the results? 

1.8 	 U.S. census statistics show that college graduates make more than $254,000 more 
in their lifetime than non-college graduates. If you were to question the validity 
of this observation, what would be your basis for doing so? 



Populations and Samples 

Chapter Outline 

2.1 Selecting Appropriate Samples 
Explains why the selection of an appropriate sample has an impor- 
tant bearing on the reliability of inferences made about a population 

2.2 Why Sample? 
Gives a number of reasons as to why sampling is often preferable to 
census taking 

2.3 How Samples Are Selected 
Shows several ways in which samples are selected 

2.4 How to Select a Random Sample 
Illustrates with a specific example the method of selecting a sample 
by the use of a random number table 

2.5 Effectiveness of a Random Sample 
Demonstrates the credibility of the random sampling process 

Learning Objectives 

After studying this chapter, you should be able to 

1. Distinguish between 
a. population and sample 
b. parameter and statistic 
c. the various methods of sampling 

2. Explain why the method of selecting a sample is important 

3. State the reasons why samples are used 

4. Define a random sample 

5. Explain why it is important to use random sampling 

6. Select a sample using a random number table 
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SELECTING APPROPRIATE SAMPLES 

A population is a set of persons (or objects) having a common observable char-
acteristic. A sample is a subset of a population. 

The real challenge of statistics is how to come up with a reliable statement 
about a population on the basis of sample information. For example, if we want 
to know how many persons in a community have quit smoking or have health 
insurance or plan to vote for a certain candidate, we usually obtain information 
on an appropriate sample of the community and generalize from it to the entire 
population. How a subgroup is selected is of critical importance. Take the 
classic example of the Literary Digest Poll. The Literary Digest Poll attained con-
siderable prestige by successfully predicting the outcomes of four presidential 
elections before 1936. Using the same methods, the Literary Digest in 1936 mailed 
out some 10 million ballots asking persons to indicate their preference in the up-
coming presidential election. About 2.3 million ballots were returned, and 
based on these, the Literary Digest confidently predicted that Alfred M. Landon 
would win by a landslide. In fact, Franklin D. Roosevelt won with a 62% major-
ity. Soon after this fiasco the Literary Digest ceased publication. A postmortem ex-
amination of its methods revealed that the sample of 10 million was selected 
primarily from telephone directories and motor vehicle registration lists, which 
meant that the poll was overrepresented by persons with high incomes. In 1936 
there was a strong relation between income and party preference; thus, the 
poll's failure was virtually inevitable. 

The moral of this incident is clear. The way the sample is selected, not its size, 
determines whether we may draw appropriate inferences about a population. 
Modern sampling techniques can quite reliably predict the winner of a presi-
dential election from a nationwide sample of less than 2000 persons. This is re-
markable, considering that the nation's population today is more than twice as 
large as it was in 1936. 

Here are some examples of populations that one may wish to sample: 
veterans of foreign wars, marijuana users, persons convicted of driving while 
intoxicated, persons who have difficulty gaining access to medical care, gifted 
children, or residents of a certain city. The primary reason for selecting a sample 
from a population is to draw inferences about that population. Note that the 
population may consist of persons, objects, or the observations of a characteris-
tic. The set of observations may be summarized by a descriptive characteristic, 
called a parameter. When the same characteristic pertains to a sample, it is 
called a statistic. Sample statistics help us draw inferences about population 
parameters. 

The value of the population parameter is constant but usually unknown. The 
value of the statistic is known because it is computed from the sample. Obser-
vations differ from one sample to the next; consequently, the value of the statis-
tic varies from sample to sample. 
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WHY SAMPLE?  

You may be wondering, "Why not study the entire population?" There are 
many reasons. It is impossible to obtain the weight of every tuna in the Pacific 
Ocean. It is too costly to inspect every manifold housing that comes off an 
assembly line. The Internal Revenue Service does not have the workforce to 
review every income tax return. Some testing is inherently destructive: tensile 
strength of structural steel, flight of a solid propellant rocket, measurement of 
white blood count. We certainly cannot launch all the rockets to learn the num-
ber of defective ones; we cannot drain all the blood from a person and count 
every white cell. Often we cannot justify enumerating the entire population— 
that is, conducting a census—because for most purposes we can obtain suitable 
accuracy quickly and inexpensively on the basis of the information gained from 
a sample alone. One of the tasks of a statistician is to design efficient studies uti-
lizing adequate sample sizes that are not unnecessarily large. How to determine 
a sample size that is likely to give meaningful results is discussed in Chapter 8. 

HOW SAMPLES ARE SELECTED   

How reliable are our inferences regarding a population? The answer to this 
depends on how well the population is specified and on the method of sample 
selection. Having a poorly specified or enumerated population or an inappro-
priately selected sample will surely introduce bias. But bias is controllable. The 
best way to limit bias is to use random sampling, a technique that is simple to 
apply (which is why it is sometimes called simple random sampling). We use a 
means of randomization such as a random number table (described in the next 
section) to ensure that each individual in the population has an equal chance of 
being selected. This technique meets some of the important assumptions un-
derlying several statistical methods. It also makes possible the estimation of 
error. 

Samples can be selected in several other ways. In convenience sampling, a 
group is selected at will or in a particular program or clinic. These cases are often 
self-selected. Because the data obtained are seldom representative of the under-
lying population, problems arise in analysis and in drawing inferences. 

Convenience samples are often used when it is virtually impossible to select 
a random sample. For instance, if a researcher wants to study alcohol use 
among college students, ideally each member of the population—that is, each 
college student—would have an equal chance of being sampled. A random 
sample of 100, 1000, or 10,000 college students is simply not realistic. How will 
the researcher collect data about alcohol use among college students? Often the 
researcher will survey college students enrolled in a general education course, 
such as English 101. The underlying assumption on the part of the researcher is 
that a general education class, which most or all students must take, is a repre-
sentative sample of college students and therefore accurately represents alcohol 
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use at that college or university. The logical next step is to assume that the col-
leges or universities surveyed are representative in terms of college and univer-
sity students' alcohol use. One can see how the use of a convenience sample 
may eventually lead researchers to inferences about alcohol use among college 
students that are inaccurate or misleading. 

Systematic sampling is frequently used when a sampling frame (a com-
plete, nonoverlapping list of the persons or objects constituting the population) 
is available. We randomly select a first case and then proceed by selecting every 
nth (say n = 30) case, where n depends on the desired sample size. The symbol 
N is used to denote the size of the entire population. 

Stratified sampling is used when we wish the sample to represent the vari-
ous strata (subgroups) of the population proportionately or to increase the pre-
cision of the estimate. A simple random sample is taken from each stratum. 

In cluster sampling, we select a simple random sample of groups, such as a 
certain number of city blocks, and then interview a person in each household of 
the selected blocks. This technique is more economical than the random selec-
tion of persons throughout the city. 

For a complete discussion of the various kinds of sampling methods, you 
should consult a textbook on the subject. A good one is by Scheaffer, Menden-
hall, and Ott (1979). 

HOW TO SELECT A RANDOM SAMPLE 

One of the easiest ways to select a random sample is to use a random number 
table. Such tables are easy to find; they are in many statistical texts and mathe-
matical handbooks. Many calculators also generate random numbers. A portion 
of a random number table is reproduced in Table 2.1, and an additional random 
number table is included in Appendix E. Random number tables are prepared 
in such a way that each digit gets equal representation. Selecting a random sam-
ple involves three steps: (1) Define the population, (2) enumerate it, and (3) use 
a random number table to select the sample. 

Here is an illustration of how to select 10 persons from a population of 
83 cases in a hypertension study (see Table 2.2). Observe that the population is 
clearly defined: 83 cases classified according to their diastolic blood pressure, 
sex, and dietary status. Also note that the cases have been numbered arbitrarily 
from 01 to 83. If the random number table covered four pages, you might flip a 
coin twice and arbitrarily agree to assign HH (two heads) to page 1, HT to page 
2, TH to page 3, and TT to page 4. Suppose you flip heads on both tosses (HH); 
you then turn to page 1. To choose an arbitrary starting place, you could blindly 
stab at row 19 and column 31. (This procedure is illustrated in Table 2.1.) The 
row—column intersection of the starting place should be recorded, just in case 
you wish later to verify your selection and hence your sample. Next, read the 
two-digit numeral that falls at that spot. Two digits are used because your sam-
pling frame is identified by two-digit numerals. The first number selected is 24. 
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Table 2.1 Random Numbers 

col. 31 
00439 81846 45446 93971 84217 74968 	 62758 49813 13666 12981 
29676 37909 95673 66757 72420 40567 	 81119 87494 85471 81520 
69386 71708 88608 67251 22512 00169 	 58624 04059 05557 73345 
68381 61725 49122 75836 15368 52551 	 54604 61136 51996 19921 
69158 38683 41374 17028 09304 10834 	 61546 33503 84277 44800 

00858 04352 17833 41105 46569 90109 	 14713 15905 84555 92326 
86972 51707 58242 16035 94887 83510 	 56462 83759 68279 64873 
30606 45225 30161 07973 03034 82983 	 78242 06519 96345 53424 
93864 49044 57169 43125 11703 87009 	 76463 48263 99273 79449 
61937 90217 56708 35351 60820 90729 	 90472 68749 23171 67640 

94551 69538 52924 08530 79302 34981 	 12155 42714 39810 92772 
79385 49498 48569 57888 70564 17660 	 50411 19640 07597 34550 
14796 51195 69638 55111 06883 13761 	 53688 44212 71380 56294 
79793 05845 58100 24112 26866 26299 	 74127 63514 04218 07584 
98488 68394 65390 41384 52188 81868 	 74272 77608 34806 46529 

96773 24159 28290 31915 30365 06082 	 73440 16701 78019 49144 
18849 96248 46509 56863 27018 64818 	 40938 66102 65833 39169 
71447 27337 62158 25679 63325 98669 	 16926 28929 06692 05049 
97091 42397 08406 04213 52727 08328 -4 24057 78695 91207 18451 row 

56644 52133 55069 57102 67821 54934 	 66318 35153 36755 88011 19 

60138 40435 75526 35949 84558 13211 	 29579 30084 47671 44720 
80089 48271 45519 64328 48167 14794 	 07440 53407 32341 30360 
54302 81734 15723 10921 20123 02787 	 97407 02481 69785 58025 
61763 77188 54997 28352 57192 22751 	 82470 92971 29091 35441 
25769 28265 26135 52688 11867 05398 	 43797 45228 28086 84568 

80142 64567 38915 40716 76797 37083 	 53872 30022 43767 60257 
69481 57748 93003 99900 25413 64661 	 17132 53464 52705 69602 
40431 28106 28655 84536 71208 47599 	 36136 46412 99748 76167 
16264 39564 37178 61382 51274 89407 	 11283 77207 90547 50981 
19618 87653 18682 22917 56801 81679 	 93285 68284 11203 47990 

By advance agreement, you could proceed by reading down the column: 66, 29, 
7, 97, and so on. Alternatively, you could agree to read the table in some other 
reasonable way, say from left to right. Whatever the pattern you choose, you 
cannot change it during the selection process. Continuing to read down the 
columns, you would select the following individuals: 

ID Diastolic Blood Pressure 

24 58 
66 82 
29 56 
7 58 

82 66 
43 102 
53 92 
17 68 
36 60 
11 78 

1 
is 
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Table 2.2 Hypertension Study Cases by Diastolic Blood Pressure, Sex, and 
Dietary Status 

ID 

Diastolic 
Blood Pressure 

(mmHg) Sex 
Vegetarian 

Status ID 

Diastolic 
Blood Pressure 

(mmHg) Sex 
Vegetarian 

Status 

01 88 M V 42 70 M NV 
02 98 M V 43 102 M NV 
03 64 M V 44 84 M NV 
04 80 M V 45 74 M NV 
05 60 M V 46 76 M NV 

06 68 M V 47 84 M NV 
07 58 M V 48 84 M NV 
08 82 M V 49 82 M NV 
09 74 M V 50 82 M NV 
10 64 M V 51 74 M NV 

11 78 M V 52 70 M NV 
12 68 M V 53 92 M NV 
13 60 M V 54 68 M NV 
14 96 M V 55 70 M NV 
15 64 M V 56 70 M NV 

16 78 M V 57 70 M NV 
17 68 M V 58 40 M NV 
18 72 M V 59 83 M NV 
19 76 F V 60 74 M NV 
20 68 F V 61 56 F NV 

21 70 F V 62 89 F NV 
22 62 F V 63 84 F NV 
23 82 F V 64 58 F NV 
24 58 F V 65 58 F NV 
25 72 F V 66 82 F NV 

26 56 F V 67 78 F NV 
27 84 F V 68 82 F NV 
28 80 F V 69 71 F NV 
29 56 F V 70 56 F NV 
30 58 F V 71 68 F NV 

31 82 F V 72 58 F NV 
32 88 F V 73 72 F NV 
33 100 F V 74 80 F NV 
34 88 F V 75 88 F NV 
35 74 F V 76 72 F NV 

36 60 F V 77 68 F NV 
37 74 F V 78 66 F NV 
38 70 F V 79 78 F NV 
39 70 F V 80 74 F NV 
40 66 F V 81 60 F NV 
41 76 M NV 82 66 F NV 

83 72 F NV 

NOTE: ID = identification; mmHg = millimeters of mercury; V = vegetarian; 
NV = nonvegetarian. 
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Table 2.2 Hypertension Study Cases by Diastolic Blood Pressure, Sex, and 
Dietary Status 

ID 

Diastolic 
Blood Pressure 

(mmHg) Sex 
Vegetarian 

Status ID 

Diastolic 
Blood Pressure 

(mmHg) Sex 
Vegetarian 

Status 

01 88 M V 42 70 M NV 
02 98 M V 43 102 M NV 
03 64 M V 44 84 M NV 
04 80 M V 45 74 M NV 
05 60 M V 46 76 M NV 

06 68 M V 47 84 M NV 
07 58 M V 48 84 M NV 
08 82 M V 49 82 M NV 
09 74 M V 50 82 M NV 
10 64 M V 51 74 M NV 

11 78 M V 52 70 M NV 
12 68 M V 53 92 M NV 
13 60 M V 54 68 M NV 
14 96 M V 55 70 M NV 
15 64 M V 56 70 M NV 

16 78 M V 57 70 M NV 
17 68 M V 58 40 M NV 
18 72 M V 59 83 M NV 
19 76 F V 60 74 M NV 
20 68 F V 61 56 F NV 

21 70 F V 62 89 F NV 
22 62 F V 63 84 F NV 
23 82 F V 64 58 F NV 
24 58 F V 65 58 F NV 
25 72 F V 66 82 F NV 

26 56 F V 67 78 F NV 
27 84 F V 68 82 F NV 
28 80 F V 69 71 F NV 
29 56 F V 70 56 F NV 
30 58 F V 71 68 F NV 

31 82 F V 72 58 F NV 
32 88 F V 73 72 F NV 
33 100 F V 74 80 F NV 
34 88 F V 75 88 F NV 
35 74 F V 76 72 F NV 

36 60 F V 77 68 F NV 
37 74 F V 78 66 F NV 
38 70 F V 79 78 F NV 
39 70 F V 80 74 F NV 
40 66 F V 81 60 F NV 
41 76 M NV 82 66 F NV 

83 72 F NV 

NOTE: ID = identification; mmHg = millimeters of mercury; V = vegetarian; 
NV = nonvegetarian. 
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Why was number 97 excluded? The answer is simple: The sampling frame de-
fines only numbers 01 through 83. Disregard all others. A corollary problem is 
the duplication of a number already selected; in practice, the duplicate is simply 
ignored. It is important to remember that the selected numerals only identify 
the sample; the sample itself is the set of blood pressure values. 

Occasionally it may be uneconomical or impractical to implement a random 
selection scheme that requires enumeration of the entire population. For exam-
ple, it would be nearly impossible to obtain a list of all persons in a city who 
have a sexually transmitted disease or are obese. In such cases one might have 
to resort to whatever lists are conveniently available: 

Simple random sampling is well named—you can see how simple it is to 
apply. Yet it is one of the statistician's most vital tools and is used in countless 
applications. It is the basic building block for every method of sampling, no 
matter how sophisticated. 

2.5 	 EFFECTIVENESS OF A RANDOM SAMPLE 

Students who encounter random sampling for the first time are somewhat 
skeptical about its effectiveness. The reliability of sampling is usually demon-
strated by defining a fairly small population and then selecting from it all 
conceivable samples of a particular size, say three observations. Then, for each 
sample, the mean (average) is computed and the variation from the population 
mean is observed. A comparison of these sample means (statistics) with the 
population mean (parameter) neatly demonstrates the credibility of the sam-
pling scheme. 

In this chapter we try to establish credibility by a different approach. If you 
look ahead to Chapter 3, you will find Table 3.1, which lists characteristics of 
a representative sample of 100 individuals from the 7683 participants in the 
Honolulu Heart Study, which investigated heart disease among men ages 45 
through 67. Five separate samples of 100 observations each were selected from 
this population, and the mean ages were compared with the population mean. 
The results of this comparison are shown in Table 2.3. We can see that the pop-
ulation parameter is 54.36 and that the five statistics representing this mean are 
all very close to it. The difference between the sample estimate and the popula-
tion mean never exceeds 0.5 years, even though each sample represents only 
1.3% of the entire population. This comparison underscores how much similar-
ity you can expect among sample means. 

Table 2.3 Effectiveness of a Random Sample 

Sample ( n = 100 each) 
Population 
(N = 7683) 	 1 	 2 	 3 	 4 	 5 

Mean age 	 54.36 	 54.85 	 54.31 	 54.31 	 54.67 	 54.02 
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Conclusion 

Assessing all individuals may be impossible, impractical, expensive, or inaccu-
rate, so it is usually advantageous to study instead a sample of the original pop-
ulation. To do this we must clearly identify the population, be able to list it in a 
sampling frame, and utilize an appropriate sampling technique. Although sev-
eral methods of selecting samples are possible, random sampling is the most 
practical in that it is easy to apply, limits bias, provides estimates of error, and 
meets the assumptions of the statistical tests. The effectiveness of random sam-
pling can easily be demonstrated by comparing sample statistics with popula-
tion parameters. The statistics obtained from a sample are used as estimates of 
the unknown parameters of the population. 

Vocabulary List 

cluster sample 
convenience sample 
parameter 
population 

random number table 
random sample 
sample 
sampling frame 

statistic 
stratified sample 
stratum (pl. strata) 
systematic sample 

Exercises 

	

2.1 	 Draw a sample of 10 from Table 2.2 by the use of the random number table 
(Table 2.1). Make note of 
a. the row and column where you started 
b. the direction in which you proceeded 
c. the 10 values you selected (show the ID and blood pressure for each) 
What is this type of sample called? 

	

2.2 	 Suppose in Exercise 2.1 you had selected the sample by taking two simple ran- 
dom samples of five from each of the two diet groups. What name would you 
apply to such a sample? 

	

2.3 	 Select a sample of 10 from Table 2.2 by taking every eighth individual beginning 
with ID number 6. 
a. What is the name of such a sample? 
b. Do you see a possible source of bias in taking the sample in this way? 

	

2.4 	 Look ahead to the blood glucose values listed in Table 3.1. 
a. Describe the population. 
b. Select a simple random sample of 10. 
c. What statistical term describes the characteristic for the sample? 
d. What statistical term describes the characteristic for the population? 

	

2.5 	 Describe the differences between 
a. a parameter and a statistic 
b. a sample and a census 
c. a simple random sample and a convenience sample 

	

2.6 	 Why is the way a sample is selected more important than the size of the sample? 
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2.7 	 Describe the population and sample for 
a. Exercise 2.1 
b. the data in Table 3.1 

	

2.8 	 Describe the steps you would take if you were asked to determine 
a. the proportion of joggers in your community 
b. the number of workers without health insurance at companies with fewer 

than 100 workers in your community 
c. the number of pregnant women not obtaining prenatal care in your community 
d. the number of homeless people in your community 

	

2.9 	 a. In what ways are a random sample, convenience sample, and systematic sam- 
ple different? In what ways are they similar? 

b. Describe a situation in which it would be appropriate and more convenient to 
use a random sample, a convenience sample, a systematic sample, or a cluster 
sample. 

2.10 a. Explain why a convenience sample, such as the selection of students in one or 
more general education classes at your college or university, may not be rep- 
resentative of students at your institution. 

b. Explain why students at your college or university may not be representative 
of students in general. 



Organizing and Displaying Data 

Chapter Outline 

3.1 The Use of Numbers in Organizing Data 
Discusses the three types of numbers in relation to organizing data 

3.2 Quantitative and Qualitative Data 
Draws a distinction among qualitative data, discrete quantitative 
data, and continuous quantitative data 

3.3 The Frequency Table 
Gives instructions on how to organize data in the form of a fre-
quency table 

3.4 Graphing Data 
Discusses and illustrates various methods of graphing, with empha-
sis on those that apply specifically to frequency distributions 

Learning Objectives 

After studying this chapter, you should be able to 

1. Distinguish between 
a. qualitative and quantitative variables 
b. discrete and continuous variables 
c. symmetrical, bimodal, and skewed distributions 
d. positively and negatively skewed distributions 

2. Construct a frequency table that includes class limits, class frequency, relative fre-
quency, and cumulative frequency 

3. Indicate the appropriate types of graphs that can be used for displaying quantitative 
and qualitative data 

4. Distinguish which form of data presentation is appropriate for different situations 

5. Construct a histogram, a frequency polygon, an ogive, a bar chart, and a box and 
whisker plot 

6. Interpret a frequency table 

7. Distinguish among and interpret the various kinds of graphs 

8. Determine and interpret percentiles from an ogive 

23 
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3.1 	 THE USE OF NUMBERS IN ORGANIZING DATA 

There are three general ways of organizing and presenting data: tables, graphs, 
and numerical methods. Each of these ways will be illustrated by reference to a 
sample of 100 individuals, selected by systematic random sampling from a 
Honolulu Heart Study population of 7683 (Phillips, 1972). The data for this sam-
ple are presented in Table 3.1. 

First, however, we must take a few moments to discuss the subject of num-

bers. There are many different types of numbers. Those used most frequently in 
everyday life—telephone, zip code, social security, driver's license, and the 
like—do not represent an amount or quantity. Such numbers are used as names 
or identifiers of a person's status, category, or attribute and are referred to as 
nominal numbers. In Table 3.1, the nominal variables are the ID number and 
smoking status (smoker vs. nonsmoker). 

An ordinal is another kind of number. Ordinals represent an ordered series 
of relationships. First, second, and third are ordinals. They may be applied, for 
example, to the rank order of causes of death by type of disease. Note that an or-
dinal indicates position in an ordered series but says nothing at all about the 
magnitude of difference between any two successive entries. In Table 3.1, edu-
cational level and physical activity status are examples of ordinal variables. 

A third kind of number is one measured on an interval scale. An interval 
scale has equal units but an arbitrary zero point. Temperature is an example of 
an interval scale datum. Interval scale units may be added or subtracted but 
they may not be multiplied or divided. Common statistics such as the mean, 
standard deviation, and t can be computed on interval scale data. For example, 
an average age or height is meaningful, whereas an average zip code (a nomi-
nal variable) is senseless. It is not appropriate to perform arithmetic operations 
on nominal data. Variables such as weight (or height), which we can compare 
meaningfully with one another (say, 50 kg is twice 25 kg), are said to be mea-
sured on a ratio scale. 

3.2 	 QUANTITATIVE AND QUALITATIVE DATA 

As noted in Chapter 1, specific characteristics (e.g., age, height, and weight) that 
we may want to assess for a certain population are referred to as variables. Vari-
ables may be categorized further as qualitative or quantitative. Variables that 
yield observations on which individuals can be categorized according to some 
characteristic or quality are referred to as qualitative variables. Examples of 
qualitative variables are occupation, sex, marital status, and education level. 
Variables that yield observations that can be measured are considered to be 
quantitative variables. Examples of quantitative variables are weight, height, 
and serum cholesterol. 
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Table 3.1 Data for a Sample of 100 Individuals of the Honolulu Heart Study Population of 
7683 Persons, 1969 

ID 

Educa- 
tional 
Level 

Weight 
(KG) 

Height 
(CM) Age 

Smoking 
Status 

Physical 
Activity 
at Home 

Blood 
Glucose 

Serum 
Choles- 

terol 

Systolic 
Blood 

Pressure 
Ponderal 

Index 

1 2 70 165 61 1 1 107 199 102 40.0361 
2 1 60 162 52 0 2 145 267 138 41.3808 
3 1 62 150 52 1 1 237 272 190 37.8990 
4 2 66 165 51 1 1 91 166 122 40.8291 
5 2 70 162 51 0 1 185 239 128 39.3082 

6 4 59 165 53 0 2 106 189 112 42.3838 
7 1 47 160 61 0 1 177 238 128 44.3358 
8 3 66 170 48 1 1 120 223 116 42.0663 
9 5 56 155 54 0 2 116 279 134 40.5138 

10 2 62 167 48 0 1 105 190 104 42.1942 

11 4 68 165 49 1 2 109 240 116 40.4248 
12 1 65 166 48 0 1 186 209 152 41.2862 
13 1 56 157 55 0 2 257 210 134 41.0365 
14 2 80 161 49 0 1 218 171 132 37.3648 
15 3 66 160 50 0 2 164 255 130 39.5918 

16 4 91 170 52 0 2 158 232 118 37.7951 
17 3 71 170 48 1 1 117 147 136 41.0547 
18 5 66 152 59 0 2 130 268 108 37.6123 
19 1 73 159 59 0 2 132 231 108 38.0444 
20 4 59 161 52 0 1 138 199 128 41.3563 

21 1 64 162 52 1 1 131 255 118 40.5001 
22 3 55 161 52 1 1 88 199 134 42.3356 
23 2 78 175 50 1 1 161 228 178 40.9582 
24 2 59 160 54 0 1 145 240 134 41.0995 
25 3 51 167 48 1 2 128 184 162 45.0326 

26 3 83 171 55 0 1 231 192 162 39.2016 
27 2 66 157 49 1 2 78 211 120 38.8495 
28 4 61 165 51 0 1 113 201 98 41.9155 
29 2 65 160 53 0 1 134 203 144 39.7939 
30 3 75 172 49 0 1 104 243 118 40.7858 

31 4 61 164 49 0 2 122 181 118 41.6615 
32 1 73 157 53 1 2 442 382 138 37.5658 
33 2 66 157 52 0 1 237 186 134 38.8495 
34 1 73 155 48 0 2 148 198 108 37.0873 
35 2 61 160 53 0 1 231 165 96 40.6453 

36 3 68 162 50 0 2 161 219 142 39.6898 
37 2 52 157 50 0 2 119 196 122 42.0629 
38 5 73 162 50 0 1 185 239 146 38.7622 
39 1 52 165 61 1 2 118 259 126 44.2062 
40 1 56 162 53 1 1 98 162 176 42.3434 

41 3 67 170 48 1 2 218 178 104 41.8560 
42 1 61 160 47 0 1 147 246 112 40.6453 
43 3 52 166 62 1 2 176 176 140 44.4741 
44 2 61 172 56 1 2 106 157 102 43.6937 
45 3 62 164 55 1 2 109 179 142 41.4362 

46 2 56 155 57 1 2 138 231 146 40.5138 
47 1 55 157 50 0 2 84 183 92 41.2838 

(Continued) 
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Table 3.1 (Continued) 

ID 

Ed uca- 
tional 
Level 

Weight 
(KG) 

Height 
(CM) Age 

Smoking 
Status 

Physical 
Activity 
at Home 

Blood 
Glucose 

Serum 
Choles- 

terol 

Systolic 
Blood 

Pressure 
Ponderal 

Index 

48 3 66 165 48 1 2 137 213 112 40.8291 

49 1 59 159 51 0 2 139 230 152 40.8426 

50 3 53 152 53 1 2 97 134 116 40.4655 

51 5 71 173 52 0 2 169 181 118 41.7792 

52 2 57 152 49 0 1 160 234 128 39.4959 

53 2 73 165 50 1 1 123 161 116 39.4800 

54 3 75 170 49 0 2 130 289 134 40.3115 

55 3 80 171 50 1 2 198 186 108 39.6856 

56 4 49 157 53 0 1 215 298 134 42.9044 

57 4 65 162 52 0 1 177 211 124 40.2913 

58 2 82 170 56 0 2 100 189 124 39.1302 

59 3 55 155 52 0 2 91 164 114 40.7578 

60 3 61 165 58 0 1 141 219 154 41.9155 

61 2 50 155 54 1 2 139 287 114 42.0735 

62 5 58 160 56 0 1 176 179 114 41.3343 

63 1 55 166 50 1 2 218 216 98 43.6503 

64 5 59 161 47 0 2 146 224 128 41.3564 

65 2 68 165 53 1 1 128 212 130 40.4248 

66 2 60 170 53 1 2 127 230 122 43.4243 

67 1 77 160 47 1 1 76 231 112 37.6089 

68 5 60 155 52 0 1 126 185 106 39.5927 

69 3 70 164 54 0 1 184 180 128 39.7935 

70 2 70 165 46 0 1 58 205 128 40.0361 

71 3 77 160 58 1 1 95 219 116 37.6089 

72 5 86 160 53 0 2 144 286 154 36.2483 

73 2 67 152 49 1 2 124 261 126 37.4242 

74 3 77 165 53 1 1 167 221 140 38.7841 

75 3 75 169 57 0 2 150 194 122 40.0744 

76 2 70 165 52 0 2 156 248 154 40.0361 

77 2 70 165 49 1 1 193 216 140 40.0361 

78 1 71 157 53 0 1 194 195 120 37.9153 

79 1 55 162 49 0 2 73 217 140 42.5985 

80 2 59 165 53 1 2 98 186 114 42.3838 

81 3 64 159 50 0 2 127 218 122 39.7501 

82 1 66 160 54 0 1 153 173 94 39.5918 

83 4 59 165 60 0 2 161 221 122 42.3838 

84 3 68 165 57 0 1 194 206 172 40.4248 

85 5 58 160 52 0 1 87 215 100 41.3343 

86 1 57 154 65 1 1 188 176 150 40.0156 

87 2 60 160 65 0 2 149 240 154 40.5699 

88 2 53 162 62 0 1 215 234 170 43.1277 

89 2 61 159 62 1 2 163 190 140 40.3913 

90 1 66 154 62 0 1 111 204 144 38.1072 

91 1 61 152 67 0 2 198 256 156 38.6131 

92 2 52 152 66 0 2 265 296 132 40.7233 

93 1 59 155 62 0 2 143 223 140 39.8151 

94 1 63 155 62 1 1 136 225 150 38.9540 

95 2 61 165 63 0 2 298 217 130 41.9155 

(Continued) 
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Table 3.1 (Continued) 

Educa- 	 Physical 	 Serum Systolic 
tional Weight Height 	 Smoking Activity Blood Choles- Blood Ponderal 

ID Level 	 (KG) 	 (CM) Age Status at Home Glucose terol Pressure Index 

96 2 68 155 67 0 2 173 251 118 37.9749 
97 1 58 170 62 0 1 148 187 162 43.9178 
98 3 68 160 55 0 1 110 290 128 39.1998 
99 5 60 159 50 0 2 188 238 130 40.6144 

100 2 61 160 54 1 1 208 218 208 40.6453 

Code for variables: 
Education: 1 = none, 2 = primary, 3 = intermediate, 4 = senior high, 5 = technical school, 

6 = university 
Weight: in kilograms 
Height: in centimeters 
Smoking: 0 = no, 1 = yes 
Physical activity: 1 = mostly sitting, 2 = moderate, 3 = heavy 
Blood glucose: in milligrams percent 
Serum cholesterol: in milligrams percent 
Systolic blood pressure: in millimeters  of mercury 
Ponderal index: height ± \Yweight 

Quantitative variables can be classified further as discrete or continuous. 
The number of children per household, the number of times you visit a doctor, 
and the number of missing teeth are termed discrete variables; they must al-
ways be integers—that is, whole numbers (e.g., 0, 1, and 2). Variables such as 
age, height, and weight may take on fractional values (e.g., 37.8, 138.2, and 
112.9). They are referred to as continuous variables. 

Statisticians often treat discrete variables as continuous variables. An exam-
ple that you probably have noticed is the number of children per household. 
You may see a number such as 2.4 children per household. Obviously you can-
not have .4 of a child, yet this is a widely used statistic. The reason for treating 
discrete variables as continuous variables is that it significantly improves the 
accuracy or predictability of the data. If a community group, such as a school, is 
trying to estimate the number of children that will need services, how should 
that estimate be made? Let us assume that a community anticipated that it 
would have 100 new households in the next 5 years. If the number of children 
per household is treated strictly as a discrete variable, then the average number 
of children per household would be 2 and the estimate for 100 new households 
would be an increase of 200 children. Treating the discrete variable as a contin-
uous variable (2.4 children per household) would yield an estimate of 240 chil-
dren. In all likelihood, the 240 would be the more accurate estimate. 

Different types of variables are analyzed differently. Know what type of 
data you have. This will help you to select quickly the appropriate method of 
analyis. 
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:.3 	 THE FREQUENCY TABLE 

Perhaps the most convenient way of summarizing or displaying data is by 
means of a frequency table. Tables 3.2 and 3.3 are examples of frequency tables, 
constructed from the systolic blood pressure readings (by smoking status) of 
our Honolulu Heart Study sample, Table 3.1. The first step in constructing such 
a table is to compute the interval spanned by the data. We can obtain this inter-
val by arranging the data into an array, a listing of all observations from small-
est to largest. We find that the overall blood pressure interval is 92-208 mm, a 
range of 116 mm. 

The next step is to divide the range into a number of arbitrary but usually 
equal and nonoverlapping segments called class intervals. Intervals are usually 

Table 3.2 Frequency Table for Systolic Blood Pressure of Nonsmokers from Table 3.1 

Class Interval 
(Systolic 

Blood 
	

f 
	

Relative 
Pressure*) 
	

Tally 
	 (Frequency) 

	
Frequency (°/0) 

90-109 Vri igi 10 16 
110-129 igi 	 IA 	 1.1-11 	 liri 	 IHI 24 38 
130-149 V1 Uri 0 III 18 29 
150-169 VI IHI 9 14 
170-189 II 2 3 
190-209 0 0 

Total 63 100 

SOURCE: Honolulu Heart Study. 

*In millimeters of mercury. 

Table 3.3 Frequency Table for Systolic Blood Pressure of Smokers from Table 3.1 

Class Interval 
(Systolic 

Blood 	 f 	 Relative 
Pressure*) 	 Tally 	 (Frequency) 	 Frequency C/O 

90-109 Vn 5 14 
110-129 0-11 OTI Vi 15 41 
130-149 1-Hi 0 10 27 

150-169 III 3 8 
170-189 II 2 5 
190-209 II 2 5 

Total 63 100 

SOURCE: Honolulu Heart Study. 

*In millimeters of mercury. 
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equal in length, thereby aiding the comparisons between the frequencies of any 
two intervals. The beginning and length of the class intervals should be reason-
ably convenient and correspond, as far as possible, to meaningful stopping 
points. The number of intervals depends, of course, on the number of observa-
tions but in general should range from 5 to 15. With too many class intervals, the 
data are not summarized enough for a clear visualization of how they are dis-
tributed. With too few, the data are oversummarized and some of the details of 
the distribution may be lost. Suppose we decide that we want six intervals. Re-
member, the size of intervals in general should range from 5 to 15. In this case, 
however, the size of the class interval should be 116/6 = 19.3 or 20. In Table 3.2, 
therefore, the first interval is 90-109 mm, where 90 and 109 are called class lim-
its. The number of observations falling into any given interval is called the class 
frequency, usually symbolized by f For the first interval, f is 10, obtained from 
the tally. The tally is a familiar and convenient way of keeping score of a set of 
observations. 

A completed frequency table provides a frequency distribution. A frequency 
distribution is a table (or a graph or an equation) that includes a set of intervals 
and displays the number of measurements in each interval—that is, it shows 
the proportion of a population or sample having certain characteristics. From 
Tables 3.2 and 3.3 we can derive the range, the frequency in each of the inter-
vals, and the total number of observations collected. Frequency tables should 
include an appropriate descriptive title, specify the units of measurement, and 
cite the source of data. 

Frequency tables often include other features, for example, the relative fre-
quency, which represents the relative percentage to total cases of any class in-
terval. It is obtained by dividing the number of cases in the class interval by the 
total number of cases and multiplying by 100. For example, in Table 3.2, the rel-
ative frequency of the first class, 90-109 mm, is (10/63)100 = 16%. It indicates 
the percentage of total cases that fall in a given class interval. The use of relative 
frequency is particularly helpful in making a comparison between two sets of 
data that have a different number of observations, like our 63 nonsmokers and 
37 smokers. For example, in the blood pressure range of 90-109 mm, 10 (16%) of 
the nonsmokers and 5 (14%) of the smokers were represented. 

Class boundaries are points that demarcate the true upper limit of one class 
and the true lower limit of the next. For example, the class boundary between 
classes 90-109 and 110-129 is 109.5; it is the upper boundary for the former and 
the lower boundary for the latter. Class boundaries may be used in place of class 
limits. 

Cumulative relative frequency, also known as cumulative percentage, 
gives that percentage of individuals having a measurement less than or equal 
to the upper boundary of the class interval. The cumulative percentage distri-
bution is of value in obtaining such commonly used statistics as the median 
and percentile scores, which we will discuss later in this chapter. It also makes 
possible a rapid comparison of entire frequency distributions, ruling out any 
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Table 3.4 Comparison of Systolic Blood Pressure Between Smokers and Nonsmokers from 

Table 3.1 

Relative Frequency (%) 	 Cumulative Relative Frequency (%) 
Class Interval 

(Systolic Blood Pressure*) Nonsmokers Smokers Nonsmokers Smokers 

90-109 16 14 16 14 

110-129 38 41 54 55 

130-149 29 27 83 82 

150-169 14 8 97 90 

170-189 3 5 100 95 

190-209 0 5 100 100 

SOURCE: Honolulu Heart Study. 

*In millimeters of mercury. 

need to compare individual class intervals. Cumulative relative frequency is 
easy to compute. You do it by successively cumulating the relative frequencies 
of each of the various class intervals. In our example, for nonsmokers the 
cumulative percentage for the first four intervals is 16 + 38 + 29 + 14 = 97% 
(Table 3.4). The interpretation: 97% of the nonsmokers in the sample have a 
systolic blood pressure below 169.5. By comparison, 90% of the smokers have 
a blood pressure below the same level. An alternate way of looking at this is to 
note that 3% of the nonsmokers and 10`)/0 of the smokers have a systolic blood 
pressure above 169.5. 

4 	 GRAPHING DATA 

The second way of displaying data is by use of graphs. Graphs give the user a 
nice overview of the essential features of the data. Although such visual aids are 
even easier to read than tables, they often do not give the same detail. 

Graphs are designed to help the user obtain at a glance an intuitive feeling 
for the data. So it is essential that each graph be self-explanatory—that is, have 
a descriptive title, labeled axes, and an indication of the units of observation. An 
effective graph is simple and clean. It should not attempt to present so much in-
formation that it is difficult to comprehend. Seven graphs will be discussed 
here—namely, histograms, frequency polygons, cumulative frequency poly-
gons, stem-and-leaf displays, bar charts, pie charts, and box and whisker plots. 

Histograms 

Perhaps the most common graph is the histogram. A histogram is nothing more 
than a pictorial representation of the frequency table. It consists of an abscissa 
(horizontal axis), which depicts the class boundaries (not limits), and a perpen- 
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Figure 3.1 Histogram Illustrating the Data of Table 3.2: Systolic 
Blood Pressure of a Sample of 63 Nonsmokers from the Honolulu 
Heart Study 

dicular ordinate (vertical axis), which depicts the frequency (or relative fre-
quency) of observations. The vertical scale should begin at zero. A general rule 
in laying out the two scales is to make the height of the vertical scale equal to 
approximately three-fourths the length of the horizontal scale. Otherwise, the 
histogram may appear to be out of proportion with reality. Once the scales have 
been laid out, a vertical bar is constructed above each class interval equal in 
height to its class frequency. For our Honolulu Heart Study example, the bar 
over the first class interval is 10 units high (Figure 3.1). 

Frequencies are represented not only by height but also by the area of each 
bar. The total area represents 100%. From Figure 3.1 it is possible to measure 
that 16% of the area corresponds to the 10 scores in the class interval 89.5-109.5 
and that 38% of the area corresponds to the 24 observations in the second bar. 
Because area is proportional to the number of observations, be especially care-
ful when constructing histograms from frequency tables that have unequal 
class intervals. How this is done is illustrated with the income data shown in 
Table 3.5. 

From Table 3.5 we can see that the first five class intervals are measured in 
$5000 units while the next two intervals are $10,000 (i.e., two $5000 units) and 
$15,000 (three $5000 units), respectively. Because area is an indication of fre-
quency in a histogram, we have to allocate the appropriate amount of area to 
each bar. The heights of the first five class intervals are their respective relative 
frequencies—that is, 6.9, 11.5, and so on. The height for the other intervals is ob-
tained using the following formula: 

Height = relative frequency/interval width 
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Table 3.5 Household Income, 1989 

Number of 	 Relative 
Income ($) 
	

Households 	 Frequency (%) 

0-4,999 6,320,400 6.9 
5,000-9,999 10,534,000 11.5 

10,000-14,999 9,709,600 10.6 
15,000-19,999 9,100,000 10.0 
20,000-24,999 8,427,200 9.2 
25,000-34,999 14,747,600 16.1 
35,000-49,999 15,755,200 17.2 
50,000-74,999 16,488,000 18.0 
75,000 and over 458,000 0.5 

Total 91,600,000 100.0 

The height for the sixth interval is 8.05 (= 16.1/2) and for the seventh, 5.7 
(= 17.2/3). 

For the 50,000 to 75,000 interval, determining the width of the interval 
becomes tricky. In this case, our interval will be five times wider than the $5000 
interval [(75,000 — 50,000)/5000 = 5]. Consequently, the height for the last in-
terval will be 3.6 ( = 18.0/5). 

Using these heights, we can now draw the histogram, as shown in Figure 3.2. 
From Figure 3.2 we can see that the percent frequencies of households decreases 
as income increases. Furthermore, we can say that there is a higher percentage 
of households with low income than with high income. 

Frequency Polygons 

A second commonly used graph is the frequency polygon, which uses the same 
axes as the histogram. It is constructed by marking a point (at the same height  
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Figure 3.2 Histogram of Household Income, 1989, United States 
*The 0.5% of households with income $75,000 and over is not shown. 
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Figure 3.3 Frequency Polygon Illustrating the Data of Table 
3.2: Systolic Blood Pressure of a Sample of 63 Nonsmokers 
from the Honolulu Heart Study 

as the histogram's bar) at the midpoint of the class interval. These points are 
then connected with straight lines. At the ends, the points are connected to the 
midpoints of the previous (and succeeding) intervals of zero frequency (Figure 
3.3). Frequency polygons, especially when superimposed, are superior to his-
tograms in providing a means of comparing two frequency distributions. In fre-
quency polygons, the frequency of observations in a given class interval is rep-
resented by the area contained beneath the line segment and within the class 
interval. This area is proportional to the total number of observations in the fre-
quency distribution. Frequency polygons should be used to graph only quanti-
tative (numerical) data, never qualitative (i.e., nominal or ordinal) data because 
these latter data are not continuous. 

Frequency polygons may take on a number of different shapes. Some of 
those most commonly encountered are shown in Figure 3.4. Part (a) of the fig-
ure is the classic "bell-shaped" symmetrical distribution. Part (b) is a bimodal 
(having two peaks) distribution that could represent an overlapping group of 
males and females. Part (c) is a rectangular distribution in which each class in-
terval is equally represented. Parts (a) and (c) are symmetrical, whereas parts 
(d) and (e) are skewed, or asymmetrical. The frequency polygon of part (d) is 
positively skewed since it tapers off in the positive direction, and part (e) is neg-
atively skewed. 

Cumulative Frequency Polygons 

At times it is useful to construct a cumulative frequency polygon, also called 
an ogive, which is a third type of graph. Although the horizontal scale is the 
same as that used for a histogram, the vertical scale indicates cumulative 
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(a) Symmetrical 
	

(b) Bimodal 
	

(c) Rectangular 

(d) Skewed to right 	 (e) Skewed to left 

Figure 3.4 Various Shapes of Frequency Polygons 

frequency or cumulative relative frequency. To construct the ogive, we place a 
point at the upper class boundary of each class interval. Each point represents 
the cumulative relative frequency for that class. Note that not until the upper 
class boundary has been reached have all the data of a class interval been accu-
mulated. The ogive is completed by connecting the points (Figure 3.5). Ogives 
are useful in comparing two sets of data, as, for example, data on healthy and 
diseased individuals. In Figure 3.5 we can see that 90% of the nonsmokers and 
86% of the smokers had systolic blood pressures below 160 mmHg. The ogive 
gives for each interval the cumulative relative frequency—that is, the percent-
age of cases having systolic blood pressures in that interval or a lower one. 

Percentiles may be obtained from an ogive. The 90th percentile is that obser-
vation that exceeds 90% of the set of observations and is exceeded by only 10% 
of them. Percentiles are readily obtained, as in Figure 3.5. In our example, the 
50th percentile, or median, for nonsmokers, is a blood pressure of 127.5 mmHg, 
and the 90th percentile is 159.5 mmHg. 

Stem-and-Leaf Displays 

Tukey (1977) has suggested an innovative technique for summarizing data that 
utilizes characteristics of the frequency distribution and the histogram. It is 
referred to as the stem-and -leaf display; in this technique, the "stems" repre-
sent the class intervals and the "leaves" are the strings of values within each 
class interval. Table 3.6 illustrates the usefulness of this technique in helping 
you develop a better feel for your data. The table is a stem-and-leaf display that 
utilizes the observations of systolic blood pressures of the 63 nonsmokers of 
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Figure 3.5 Ogives Illustrating the Data of Table 3.4: Systolic Blood Pres-
sure of a Sample of 63 Nonsmokers and 37 Smokers from the Honolulu 
Heart Study 

Table 3.2. For each stem (interval) we arrange the last digits of the observations 
from the lowest to the highest. This arrangement is referred to as the leaf. The 
leaves (strings of observations) portray a histogram laid on its side; each leaf re-
flects the values of the observations, from which it is easy to note their size and 
frequencies. Consequently, we have displayed all observations and provided a 
visual description of the shape of the distribution. It is often useful to present 
the stem-and-leaf display together with a conventional frequency distribution. 
From the stem-and-leaf display of the systolic blood pressure data (Table 3.6) 
we can see that the range of measurements is 92 to 172. The measurements in 
the 120s occur most frequently, with 128 being the most frequent. We can also 
see which measurements are not represented. 

Bar Charts 

The bar chart is a convenient graphical device that is particularly useful for dis-
playing nominal or ordinal data—data like ethnicity, sex, and treatment cate-
gory. The various categories are represented along the horizontal axis. They 
may be arranged alphabetically, by frequency within a category, or on some 
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Table 3.6 Stem-and-Leaf Display of Systolic Blood Pressure of 63 
Nonsmokers (Data from Table 3.2) 

Stems 
(Intervals) 

Leaves 
(Observations) 

Frequency 
(f) 

90-99 2 4 6 8 4 
100-109 0 4 6 8 8 8 6 
110-119 2 2 4 4 8 8 8 8 8 9 
120-129 0 2 2 2 2 4 4 8 8 8 8 8 8 8 8 15 
130-139 0 0 0 2 2 4 4 4 4 4 4 8 12 
140-149 0 0 2 4 4 6 6 
150-159 2 2 4 4 4 4 6 7 
160-169 2 2 2 
170-179 0 2 2 
180-189 0 

Total 63 

other rational basis. We often arrange bar charts according to frequency, begin-
ning with the most frequent and ending with the least frequent. The height of 
each bar is equal to the frequency of items for that category. To prevent any im-
pression of continuity, it is important that all the bars be of equal width and sep-
arate, as in Figure 3.6. 

Note that in a bar chart, relative frequencies are shown by heights, but in a his-
togram, relative frequencies are shown by the areas within the bars. 

To avoid misleading a reader it is essential that the scale on the vertical axis 
begin at zero. If that is impractical, one should employ broken bars (or a simi-
lar device), as shown in Figure 3.7. Here is an example of what can happen if 
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Figure 3.6 Bar Chart of Excess Mortality of Smokers over Nonsmokers 
According to Number of Cigarettes Smoked. SOURCE: Hammond (1966). 
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Figure 3.7 Bars Broken to Show Vertical Scale Does Not Begin at 
Zero. SOURCE: Hammond (1966). 

neither procedure is followed. The public relations department of a West Coast 
college recently circulated the graph shown in Figure 3.8a. It gives the clear im-
pression that enrollment doubled between 1986 and 1992. The reason for this is 
that the bars begin not at zero but at 2000. Persons unskilled in interpreting 
graphical data may find themselves drawn into one of the many pitfalls that 
are so well documented in books on the misuse of statistics. Figure 3.8b illus-
trates the correct way of presenting the same enrollment statistics. This graph 
makes clear that the enrollment increased by only about 50% over the seven 
years. 

Pie Charts 

A common device for displaying data arranged in categories is the pie chart 
(Figure 3.9), a circle divided into wedges that correspond to the percentage fre-
quencies of the distribution. Pie charts are useful in conveying data that consist 
of a small number of categories. 

Box and Whisker Plots 

At times we may wish to graphically examine data such as long distance tele-
phone charges for different cities to get an idea about the typical customer and 
the range of the billings. We can do this by using a box and whisker plot. To do 
so we need to determine the median and the quartile statistics. 

The median is the score that divides a ranked series of scores into two equal 
halves. If there is an equal number of scores you will need to obtain the average 
(mean) of the two middle scores. 
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Figure 3.8 	 Size of Enrollment of a West Coast College, 1986 to 1992 

Here is an example. Determine the sample median for the two samples: 

A: 26, 27, 31, 32, 35, 38, 39, 40, 41 
	

Median = 35 

B: 15, 16, 17, 18, 19, 21, 22, 25, 29, 30 

	

	
Median = 19 + 21 divided by 

2 = 20 

38 
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Nephritis 
Congenital anomalies 
Septicemia 
Homicide 
Diseases of infancy 
Cirrhosis 
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Atherosclerosis 
Diabetes 
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Chronic lung disease 
Accidents and injuries                 

All other 
causes                                                  

Cardiovascular                                         

erebrovascular    
Cancer 

Figure 3.9 Pie Chart of Leading Causes of Death in the United States, 1987. 
SOURCE: National Center for Health Statistics (199Q). 

Half of the scores in each sample are less than the median and half are larger 
than the median. To determine the quartiles we need to divide the scores into 
four equal groups. 

In Figure 3.10 (page 40) we see that we use only five values to summarize the 
data: the two extremes and the three quartiles. Even with such a considerable 
condensation, the plot provides interesting information about the sample. The 
two ends of the box show the range within which the middle 50% of all the mea-
surements lie. The median is the center dot of the sample data and the ends of 
the whiskers show the spread of the data. 

Conclusion 

The principles of tabulating and graphing data are essential if we are to under-
stand and evaluate the flood of data with which we are bombarded. By proper 
use of these principles, the statistician is able to present data accurately and lu-
cidly. It is also important to know which method of presentation to choose for 
each specific type of data. Tables are usually comprehensive but do not convey 
the information as quickly or as impressively as do graphs. Remember that 
graphs and tables must tell their own story and stand on their own. They 
should be complete in themselves and require little (if any) explanation in the 
text. 
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rectangular distribution 
relative frequency 
skewed distribution 
stem-and-leaf display 
symmetrical 

distribution 
tally 

Exercises 

3.1 	 Refer to the variables of Table 3.1. 
a. Classify each variable as to whether it is qualitative or quantitative. 
b. Which of the quantitative variables are discrete? Which are continuous? 
c. Name an appropriate type of graph for presenting each variable. 
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d. Name a discrete variable that one might be interested in measuring for the 
Honolulu Heart Study group. 

3.2 	 Name the variables represented in Table 2.2 and state which type each is. 

3.3 	 How would you describe the shape of Figure 3.3? Refer to Table 3.4 and state 
whether the distribution of smokers' systolic blood pressures would be similar in 
shape to that of nonsmokers. 

3.4 	 State the principal difference between a negatively skewed distribution and a 
positively skewed one. 

3.5 	 a. From the 83 observations of diastolic blood pressure in Table 2.2, prepare a fre- 
quency table like Table 3.2 that includes clasg interval, class frequency, relative 
frequency, cumulative relative frequency, and class midpoint. 

b. Using the same sheet of graph paper, draw a histogram and a frequency poly-
gon for the same data. 

c. Construct an ogive for the same data. 
d. Find the following percentiles from the ogive: 20th, 50th (median), and 90th. 
e. What percentage of the observations are less than 70? 80? 90? 

3.6 	 For the serum cholesterol values of Table 3.1, perform the same operations as 
suggested in (a) and (b) of Exercise 3.5. Do this by activity status; that is, for those 
who reported their physical activity as (a) mostly sitting (code 1) and (b) moder-
ate (code 2), make separate frequency tables, histograms, and frequency poly-
gons for the serum cholesterol values. 

3.7 	 Make a bar graph of the educational levels of Table 3.1. 

3.8 	 With each of the variables listed here, two graphical methods are mentioned. In- 
dicate which method is more appropriate. State why one method is more appro-
priate than the other. 
a. number of dental cavities per person: pie chart, bar graph 
b. triglyceride level: frequency polygon, bar graph 
c. occupational classification: pie chart, histogram 
d. birthrate by year: line graph, histogram 

3.9 	 Prepare a stem-and-leaf display for the weights listed in Table 3.1. 
a. Which are the smallest and the largest weights? 
b. Which is the most frequent weight? 

3.10 a. Prepare a stem-and-leaf display for the systolic blood pressure measurements 
of smokers in Table 3.1. Use the same stems as in Table 3.6, but put the leaves 
on the left side of the stem. 

b. Combine the stem-and-leaf displays of Exercise 3.10a and Table 3.6 into a 
back-to-back stem display and compare the two distributions. 

3.11 	 Prepare a stem-and-leaf display for the heights listed in Table 3.1. 
a. Which is the smallest and which is the largest height? 
b. Which is the most frequent height? 

3.12 	 For the weight data in Table 3.1, do the following: 
a. Construct separate frequency tables for smokers and for nonsmokers. Use six 

equal class intervals beginning with 45. 
b. Construct a histogram for each group. 
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c. Construct a frequency polygon for each group on the same graph. 
d. Compare and discuss the differences in the frequency distributions between 

smoker and nonsmoker weights. 
e. Construct an ogive for each group. Estimate its 50th percentile and compare 

them for the two groups. 

	

3.13 	 Construct a bar chart of educational level using the data in Table 3.1 for 
a. smokers 
b. nonsmokers 
c. Compare the two bar charts and comment. 

	

3.14 	 For the serum cholesterol data in Table 3.1, use equal class intervals of 30 begin- 
ning with 130, to construct 
a. a separate frequency table for each of the three subgroups classified on phys-

ical activity 
b. a histogram for each subgroup 
c. a frequency polygon for each of the three groups. Compare and discuss the 

differences in the three frequency polygons. 
d. an ogive for each group. Estimate its 50th percentile and compare the three. 

	

3.15 	 Prepare a pie chart of the educational level for the entire sample listed in Table 3.1. 

3.16 a. Using the income data from Table 3.5, combine the first two and also the third 
and fourth class intervals and prepare a histogram similar to Figure 3.2. 

b. Compare your histogram with that of Figure 3.2 and describe your findings. 

3.17 The following are weight losses (in pounds) of 25 individuals who enrolled in a 
five-week weight-control program: 

9, 7, 10, 11, 10, 2, 3, 11, 5 
4, 8, 10, 9, 12, 5, 4, 11, 8 
3, 6, 9, 7, 4, 8, 9 

a. Construct a frequency table with these six class intervals: 2-3, 4-5, 6-7, 8-9, 
10-11, 12-13 each. 

b. Construct a histogram of the weight losses. 
c. Construct a frequency polygon and describe the shape of the frequency distri-

bution. 
d. What might be a possible interpretation of the particular shape of this distri-

bution? 
e. What was the most common weight loss? 

3.18 Compare the three frequency distributions that you constructed in Exercise 3.14 
and describe them with regard to symmetry, skewness, and modality (most fre-
quently occurring observation). 

3.19 	 Classify the following data as either (1) nominal, (2) ordinal, (3) interval, or 
(4) ratio. 
a. names of students in this class 
b. the number of students in this class 
c. your 10 favorite songs 
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d. height 
e. heads and tails on a coin 

	

3.20 	 Briefly explain why discrete (discontinuous) variables are treated as continuous 
variables. Use an example as part of your explanation. 

	

3.21 	 Given is the following grouped frequency distribution: 

90-99 

80-89 

70-79 

Answer the following questions: 
a. What is the class interval? 
b. What are the true limits for the interval 80-89? 
Determine the median and quartiles necessary to construct a box and whisker 
plot for the following sets of data in Exercises 3.22 and 3.23. 

	

3.22 	 3, 4, 7, 5, 4, 6, 4, 5, 8, 3, 4, 5, 6, 5, 4 

	

3.23 	 18, 14, 17, 22, 16, 26, 33, 27, 35, 28, 44, 40, 31, 53, 70, 73, 62, 74, 93, 103, 75, 86, 84, 
90, 79, 99, 73 

3.24 Construct the box and whisker plots for the data in (a) Exercise 3.22 and (b) Ex-
ercise 3.23. 

3.25 Using the following data found recently in FBI Uniform Crime Reports, con-
struct a pie chart indicating the weapons used in committing these murders. 

11,381 committed with firearms 

3,957 committed with personal weapons such as hands or feet 

1,099 committed with knives 

19,257 all murders 

3.26 Construct a box plot for the sample of n = 100 blood pressure readings listed in 
Table 3.1 separately for smokers and nonsmokers and provide a written com-
parison of the two groups based on the box plots. 

3.27 Determine a box and whisker plot for weight loss data shown in Exercise 3.17. 



4 Summarizing Data 

Chapter Outline 

4.1 Measures of Central Tendency 
Describes, illustrates, and contrasts three common measures of cen-
tral tendency—mean, median, and mode 

4.2 Measures of Variation 
Describes several measures of variation or variability, including the 
standard deviation 

4.3 Coefficient of Variation 
Defines the coefficient of variation, useful in comparing levels of 
variation 

4.4 Means and Standard Deviations of a Population 
Contrasts the equations for the parameters of a population with the 
statistics of a sample 

Learning Objectives 

After studying this chapter, you should be able to 

1. Compute and distinguish between the uses of measures of central tendency: mean, 
median, and mode 

2. Compute and list some uses for measures of variation: range, variance, and standard 
deviation 

3. Compare sets of data by computing and comparing their coefficients of variation 

4. Select the correct equations for computing the mean and the standard deviation 

5. Be able to compute the mean and the standard deviation for grouped and un-
grouped data 

6. Understand the distinction between the population mean and the sample mean 

44 
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MEASURES OF CENTRAL TENDENCY 

Suppose you are considering accepting a new job with a well-known company. 
Salary is foremost in your mind, so you ask, "What is an employee's typical an-
nual salary?" One person tells you, "$38,000"; another, "$30,000." You decide to 
check further into these inconsistent responses. Finally, you obtain some infor-
mation you regard as reliable. Specifically, you are interested in knowing the 
lowest and the highest salaries, the typical salary, and relative frequencies of the 
various annual salaries. A small but representative sample of salaries shows 
them to be $26,000, $30,000, $30,000, $34,000, and $70,000. With this information 
at hand, you are now prepared to describe the salaries in the company. But to do 
this, you need to know how to compute statistics that characterize the center of 
the frequency distribution. 

Given a set of data, one invariably wishes to find a value about which the 
observations tend to cluster. The three most common values are the mean, the 
median, and the mode. They are known as measures of central tendency— 
the tendency of a set of data to center around certain numerical values. 

The Mean 

The arithmetic mean (or, simply, mean) is computed by summing all the obser-
vations in the sample and dividing the sum by the number of observations. As 
there are other means, such as the harmonic and geometric means, it is essential 
to designate which type of mean one uses. In this text we use only the arith-
metic mean. 

Symbolically, the mean is represented by 
+ x2  + x3  + • • • + x„ 

(4.1) 

or 

(4.2) 

In these expressions the symbol x, representing the sample mean, is read 
"x-bar"; xi  is the first and x, the ith in a series of observations. In this text we use 
X (uppercase) to denote a random variable, and x (lowercase) to indicate a par-
ticular value of a function. The symbol 1, is the uppercase Greek letter sigma 
and denotes "the sum of." Thus 
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indicates that the sum is to begin with i = l and increment by one up to and in-

cluding the last observation 
For the sample of the five salaries, 

$26,000 + $30,000 + $30,000 + $34,000 + $70,000 
x= 	 = $38000 

5 

The arithmetic mean may be considered the balance point, or fulcrum, in a 
distribution of observations. It considers the magnitude of each observation 
and is the point that balances the positive and negative deviations from the ful-
crum. The mean is affected by the value of each observation of the distribution. 
Therefore, large values influence the mean and may distort it so that it no longer 
is representative of the typical values of a distribution. 

The Median 

In a list ranked according to size—that is, the observations arranged in an 
array—the median is the observation that divides the distribution into equal 
parts. The median is considered the most typical observation in a distribution. 
It is that value above which there are the same number of observations as below. 
In short, it is the middlemost value. In our example of five salaries, the median 
is $30,000. For an even number of observations, the median is the average of the 
two middlemost values. 

The Mode 

The mode is the observation that occurs most frequently. In the salary example, 
the mode is equal to $30,000. It can be read from a graph as that value on the ab-
scissa that corresponds to the peak of the distribution. Frequency distributions, 
like the one displayed in Figure 3.5(b), are bimodal; that is, they have two 
modes. If all the values are different, there is no mode. 

Which Average Should You Use? 

With a bit of experience, you can readily determine which measure of central 
tendency is appropriate to a given situation. The arithmetic mean is by far the 
most commonly used. Because it considers, for example, the average amount of 
product consumed by a user, it is indispensable in business and commerce. If, 
for example, the average per capita consumption of sugar per year is 251b, then 
the amount of sugar to be sold in a town of 10,000 people would be 250,000 lb. 
Knowing the mean of a distribution also permits one to compare different fre-
quency distributions. 

If you want to know a typical observation in a distribution, particularly if it 
is skewed, the median proves to be a better measure than the mean. Income is 
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the most common example of a distribution that is typically skewed. Because of 
the disproportionate weight of a few top-salary jobs, the arithmetic mean for 
income is nearly always artificially inflated. For income, the median is a good 
choice because it is not affected by extreme values. 

n EXAMPLE 1 

Five individuals working for a small firm have annual incomes of $30,000, 
$45,000, $45,000, $45,000, and $200,000. Find the median, mode, and mean. 

The median is $45,000 because it is the middle observation. The mode is the 
most common observation: $45,000. The mean is 

30,000 + (3)45,000 + 200,000  365,000 
= $73,000 

5 	 5 

which does not match any of the salaries. n 

Suppose an emergency stock clerk who handles different sizes of crutches 
wants to know which is the most popular size (the mode) so that he can order 
enough to meet his demand. By looking at the several measures of central 
tendency, he can obtain some idea of the shape of the frequency distribution. 
In a symmetrical distribution (Figure 4.1), the three measures of central ten-
dency are identical. In an asymmetrical distribution (see Figure 4.2), the mode 
remains located (by definition) at the peak; the mean is off to the right; and 
the median is in between. Left-skewed distributions are the mirror image of Fig-
ure 4.2. 

Generally, modes are used for nominal scores, medians for ordinal scores, 
and means for interval scores. 

Mean 

Median 

Mode 

Figure 4.1 Symmetrical Frequency Distribution 



Asymmetrical Distribution, Figure 4.2 

Mean 
Median 
Mode 
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Skewed to the Right 

'4.2 	 MEASURES OF VARIATION 

Knowing a distribution's central tendency is helpful, but it is not enough. It 
is also important to know whether the observations tend to be quite similar 
(homogeneous) or whether they vary considerably (heterogeneous). To de-
scribe variability, measures of variation have been devised. The most common 
of these are the range, the mean deviation, and the standard deviation. 

Range 

The range is defined as the difference in value between the highest (maximum) 
and lowest (minimum) observation: 

Range = xm ax X min 
	 (4.3) 

The range can be computed quickly, but is not very useful because it considers 
only the extremes and does not take into consideration the bulk of the observa-
tions. 

Mean Deviation 

By knowing the range of a data set, we can gain some idea of the set's variabil-
ity. The mean deviation is a bit more sophisticated than the range. It is defined 
as the average deviation of all observations from the mean. We can compute 
how far observations deviate from the mean by subtracting the mean from the 
value of each observation. The mean deviation is the sum of all the absolute 
values of the deviations divided by the number of observations—that is, 

Mean deviation = ixi  – 	 +ix – 	 '•' +ixn – xi 
	

(4.4) 
n 
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Table 4.1 Annual Percentage of Medical School National Board Honorees, 1988-1992 

Year of graduation 

1988 	 1989 	 1990 	 1991 	 1992 

Percent of honors graduates (x,) 4 6 5 8 7 
Deviation from mean (x, - x) -2 0 -1 2 1 
Absolute value of deviation 

from mean (I x, - x I) 2 0 1 2 1 
Squared deviation from 

mean (x, - x)2  4 0 1 4 

where xl  — x is read as "the absolute value of x sub one minus x-bar." Ab-
solute value ignores the sign of the difference; that is, the mean deviation indi-
cates how much, on average, the observations deviate from the arithmetic mean. 
The mean deviation is now mainly of historical interest; the measure was more 
commonly used before the age of electronic calculators and computers. 

As an example, consider the percentage of graduates of a medical school 
who passed their National Boards with honors during a five-year period 
(Table 4.1). Note that some of the deviations are positive, some are negative, and 
one is zero. In sum, because x is the balance point of the observations, they add 
to zero. By using absolute values, we can eliminate the negative signs and thus 
compute a mean deviation: 

— 
Mean deviation = 

x x 	
6 1.20 
5 

For the five-year period, the percentage of graduates earning honors differed, 
on average, by 1.2 percentage points from the mean of 6%. 

Standard Deviation 

By far the most widely used measure of variation is the standard deviation, 
represented by the symbol s. It is the square root of the variance of the observa-
tions. The variance, or S 2, is computed by squaring each deviation from the 
mean, adding them up, and dividing their sum by one less than n, the sample 
size: 

(X i  - 

2 S = 
n — 1 

(4.5) 

The sample variance may thus be thought of as the mean squared deviation 
from the mean, and the greater the deviations, the greater the variance. 



Mean (4.2) Same 

(4.8) 
11 - 

Standard deviation s 
1± 

[(4.5) and (4.6)1 
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The variance is readily computed for the data of Table 4.1 as follows: 

30 
X 
	 =6 

5 

,s 2  

4 + 0 + 1 + 4 + 1 10 
S2 	 _ 25 

4 	 4 

The standard deviation is computed by extracting the square root of the vari-
ance. Or symbolically, 

s = Vs2 	 (4.6) 

For our example, s = V2.5 = 1.58. (The square root of a number is best ob-
tained with a calculator or from square root tables found as an appendix in 
many statistics books.) The value s = 1.58 indicates that, on the average, obser-
vations fall 1.58 units from the mean. Equation 4.6 and the mathematically 
equivalent calculating equation are summarized in Table 4.2. 

Both the variance and the standard deviation are measures of variation in a 
set of data. The larger they are, the more heterogeneous the distribution. For ex-
ample, if we were to compare the National Board scores of graduates of two 
medical schools, the school with the smaller standard deviation would have 
students who are more homogeneous in ability than the school with the larger. 
That is, the school with the smaller s will have scores closer to the mean and the 
school with the larger s will have scores scattered over a wider range around the 
mean. 

Table 4.2 Equations for Means and Standard Deviations 

Definition Equation 
	 Calculating Equation 

Ungrouped Data 
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Frequently, the symbol SD is used to denote the Standard Deviation, s, which 
is usually obtained from s 2. However, SD 2  can also be used to calculate the value 
of the sample variance if SD is known. 

As a measure of variation, standard deviation is much preferred over all 
other choices. The units of the standard deviation turn out to be the same as the 
units of the raw data (e.g., inches, millimeters, kilograms), whereas the units of 
variance are squared. Standard deviation is arithmetically easy to handle and 
avoids the awkwardness of absolute values. Because the magnitude of the stan-
dard deviation depends on the phenomenon being observed, which may be 
represented by large or small numbers, the standard deviation itself can be 
large or small. What is a large deviation for one variable may be small for an-
other. 

Understanding the sources of variation may help you appreciate the mean-
ing of standard deviation. For example, among subjects, one source of variation 
may be due to a personal characteristic such as age or sex. Another source may 
be individual variation; still another, the varying condition of the subject (i.e., 
observations obtained before or after dinner, or before or after exercise, may dif-
fer). Yet another source of variation is measurement error. Although a certain 
amount is inherent in any observation, scientists strive mightily to keep it to a 
minimum by use of appropriate experimental designs. 

COEFFICIENT OF VARIATION 

One important application of the mean and the standard deviation is the coeffi-
cient of variation. It is defined as the ratio of the standard deviation to the ab-
solute value of the mean, expressed as a percentage. 

100s  
CV =% 

1 x 1 
(4.7) 

The coefficient of variation depicts the size of the standard deviation relative to 
its mean. Because both standard deviation and the mean represent the same 
units, the units cancel out and the coefficient of variation becomes a pure num-
ber; that is, it is free of the measurement units of the original data. Therefore, it 
is possible to use it to compare the relative variation of even unrelated quanti-
ties. For example, we may wish to know whether the variation of blood glucose 
readings is greater or less than the variation of serum cholesterol levels. From 
Table 3.1, we can compute the variation exactly. The coefficient of variation for 
blood glucose (in milligrams per deciliter) is 54.72/152.14 x 100 = 36%; and for 
serum cholesterol it is 38.82/216.96 x 100 = 18%. From this we see that the 
variation in blood glucose is relatively greater than that in serum cholesterol. 



(4.11) (4.2) 

(4.12) 

(4.13) 

E x, 
x = 

(x, — x) 2  
_ 	 (4.5) 

— 1 

s = Vs2 	 (4.6) 

Mean 

Variance 

Standard deviation 
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MEANS AND STANDARD DEVIATIONS OF A POPULATION 

The equations given for the mean and the standard deviation apply to the data 
of a sample selected from a population. When we have data for an entire popu-
lation, we use similar equations but different symbols. Table 4.3 compares equa-
tions used for the two purposes. The population mean, ,u (lowercase Greek 
mu), is defined as the sum of the values divided by N, the number of observa-
tions for the entire population. The sample mean, x, is an estimate of ,u and is 
the sum of the values in the sample divided by n, the number of observations in 
the sample alone. (Convention dictates the use of Greek letters for population 
parameters and Roman letters for sample statistics.) The population variance, 
o 2 • 

, is the sum of the squared deviations from the population mean kt divided by 
N, whereas the sample variance 5 2  (an estimation of a-2) is the sum of the 
squared deviations from the sample mean i divided by n — 1. Dividing by 

n — 1 looks like a peculiarity, but it provides an equation that gives an unbiased 
sample variance; that is, the mean of all possible samples of a particular sample 
size gives the correct answer if n — 1 is used as a divisor. Therefore, the use of 
n — 1, instead of n, gives a more accurate estimate of a-2 . In Chapter 2, we gave 
the definitions for a parameter and a statistic. These can now be illustrated with 
the mean and standard deviation. Because bothµ and a are characteristics of a 
population, they are parameters. And because x and s are characteristics of a 
sample, they are statistics. Convention dictates the use of some shorthand to 
replace more awkward notation. Hence, in subsequent chapters, we will use x 

instead of xi  and / instead of 

Conclusion 

In describing data by use of a summary measure, it is important to select the 
measure of central tendency that best represents the data accurately. A better 

Table 4.3 Equations for Population and Sample Means and Standard Deviations 

Quantity 
	 Sample 	 Population 
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way of representing data is to use two summary measures—one to indicate cen-
tral tendency and one to indicate variation. The most commonly used pair is the 
arithmetic mean and the standard deviation. 

Vocabulary List 

absolute values 
central tendency 
coefficient of variation 
mean 

mean deviation 
median 
mode 
population mean 

range 
standard deviation 
variance 
variation 

Exercises 

	

4.1 	 Find the mean, median, mode, range, variance, and standard deviation for the 
data 8, 5, 1, 5, 2, 3. (For variance, use equation 4.5.) 

	

4.2 	 Using the sample 3, 4, 6, 1, 10, 6, 
a. find the median, mean, and range 
b. compute the standard deviation using equations 4.5 and 4.6 
c. compute the standard deviation using equation 4.8 
d. compare the results of (b) and (c) 

Why is the standard deviation of this example larger than that of Exercise 4.1? 

	

4.3 	 Determine the range, median, and mode for the data of Table 2.2. 

	

4.4 	 Assuming that Table 2.2 is a population of values, compute the mean, variance, 
and standard deviation. (Use the equation 0-2  = EX2IN - /12  for the calculation 
of variance.) 

	

4.5 	 Compute x, s 2, and s for the sample of 10 that you took in Exercise 2.1. (Use 
equation 4.8.) Compare your results with those for Exercise 4.4. 

	

4.6 	 Determine the mean, variance, and standard deviation of weights in Table 3.1 
by using the equations of Table 4.2. 

	

4.7 	 a. Calculate the coefficient of variation for the heights and weights given in 
Table 3.1. (Use the results from Exercise 4.6.) 

b. Compare the two coefficients. Which one is larger? Approximately how 
many times larger? 

	

4.8 	 a. Calculate the mean and the standard deviation for the systolic blood pres- 
sure values given in Table 3.1. (Hint: Use the equations of Table 4.2.) 

b. Calculate x — s and x + s. 
c. Calculate x — 2s and x + 2s. 
d. Calculate x — 3s and x + 3s. 
e. What percentage of the blood pressure observations fall within each of the 

three intervals you calculated in (b), (c), and (d)? 

	

4.9 	 a. Find the median age of the sample represented in Table 3.1. 
b. What is the age range? 
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4.10 	 For the cholesterol values given in Table 3.1, the mean and the standard devia- 
tion are, respectively, 216.96 and 38.82. What is the variance? 

	

4.11 	 If the variance of blood glucose values in Table 3.1 is 2994, what is the standard 
deviation? 

	

4.12 	 List some practical uses for standard deviation. 

4.13 Describe a situation in which it would be useful to know 
a. the mean, median, and mode 
b. primarily the median 
c. primarily the mean 

4.14 a. Refer to Table 3.1. Using equation 4.8, calculate the mean and the standard de-
viation of systolic blood pressure 
i. for those who have had no education (code = 1) 

ii. for those who have had intermediate education (code = 3) 
b. Compare the standard deviations of the two groups. Which set of values has 

the larger standard deviation and by how much? 
c. From your computations in (b), draw a conclusion about the relative variation 

of the observations in the two groups. 

4.15 Define 
a. measure of central tendency 
b. mean 
c. median 
d. mode 
e. population mean 
f. sample standard deviation 
g. population variance 
h. range 
i. deviation 
j. coefficient of variation 

4.16 Explain what happens to the mean, median, and standard deviation if 10, the 
fifth observation, is replaced by 2 in Exercise 4.2. 

4.17 Explain what these symbols and formulae mean 
a. /x 
b. (/x)2  
C. 1X2  

Is (Ex) 2  always larger than Ex 2 ? 

	

4.18 	 Using the results of Exercise 4.8(a) and Exercise 4.10, 
a. compute the coefficient of variation for the systolic blood pressure values 
b. compute the coefficient of variation for the cholesterol values 
c. compare the two coefficients. What are their units? 

4.19 What would you consider to be the major distinction between a population vari-
ance and a sample variance? 

	

4.20 	 Describe the characteristics of a frequency distribution if 
a. x = 15 and the median is 19 
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b. x = 19 and the median is 15 
c. x = 17 and the median is 17 

	

4.21 	 a. Why is the standard deviation rather than the variance used more commonly 
to describe the spread of a distribution? 

b. Why is the sum of the deviations [1' (x ;  — x)] always zero? 
c. Explain how it is possible for a person to drown in a river whose average 

depth is 12 inches. 
d. How would you explain the sentence "The average American is a 33-year-old 

white woman"? 

	

4.22 	 Using the sample values: 1, 2, 3, 4, 4, 5, 6, 
a. find the mean, median, and mode 
b. find the standard deviation 
c. find the coefficient of variation 

4.23 What is the standard deviation for a data set that has a mean of 16 and a variance 
of 144. 

4.24 What would be the mean and standard deviation if in Exercise 4.22 
a. each observation is increased by two units? 
b. each observation is multiplied by a factor of 2? 

4.25 Describe the frequency distribution 
a. in which the x = median = mode 
b. if the median = 10, the mode = 5, and x = 15 

4.26 Explain the basic difference in the formulas of x and A. 

4.27 Calculate the mean, median, mode and standard deviation for each of these dis-
tributions. 

A (2, 3, 4, 4, 4, 5, 6) 

B (2, 3, 4, 4, 4, 5, 20) 

C (-5, —4, —3, 0, 3, 4, 5) 

a. Which measure of central tendency would be the "best" or most useful mea-
sure for each group? Briefly justify your choice. 

b. Which distribution is skewed? 

4.28 If there is a large numerical difference between the mean and median the distri-
bution is probably 	  

4.29 If you have one or more extreme scores in a data set, which measure of central 
tendency is most likely to be affected? 

4.30 Identify the measure of central tendency that would be most appropriate for the 
following data sets: 
a. prices of homes in a community 
b. ages of incoming freshmen 
c. number of apples per tree in a commercial orchard 
d. blood pressure readings of college students 



5 Probability 

Chapter Outline 

5.1 What Is Probability? 
Discusses the concept of probability as a measure of the likelihood of 
occurrence of a particular event 

5.2 Complementary Events 
Demonstrates how to calculate probability when events are comple- 
mentary 

5.3 Probability Rules 
Solves problems involving the probability of compound events by 
use of the addition rule or the multiplication rule, or conditional 
probability 

5.4 Counting Rules 
Explains how to compute the number of possible ways an event can 
occur by use of permutations and combinations 

5.5 Probability Distributions 
Illustrates the concept of a probability distribution, which lists the 
probabilities associated with the various outcomes of a variable 

5.6 Binomial Distribution 
Describes a common distribution having only two possible out- 
comes on each trial 

Learning Objectives 

After studying this chapter, you should be able to 

1. State the meaning of "probability" and compute it in a given situation 

2. State the basic properties of probability 

3. Select and apply the appropriate probability rule for a given situation 

4. Distinguish between mutually exclusive events and independent events 

5. Distinguish between permutations and combinations; be able to compute them for 
various events 

6. Explain what a probability distribution is and state its major use 

56 
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7. State the properties of a binomial distribution 

8. Compute probabilities by using a binomial distribution 

9. Interpret the symbols in the binomial term 

WHAT IS PROBABILITY? 

A pregnant woman wonders about the chance of having a boy or a girl baby. An 
understanding of probability can throw some light on this question. Any an-
swer must be based on various assumptions. If she assumes that bearing a boy 
or a girl is equally likely, she will expect one boy baby for every two births—that 
is, half the time. As another way of estimating her chances of having a boy, she 
could count the number of boys and girls born in the past year. Vital statistics 
indicate there are about 1056 live births of boys for every 1000 live births of 
girls, so she could estimate her probability of having a boy as 

1056 
= .514 

2056 

It should be noted that the term probability applies exclusively to a future 
event, never to a past event (even if its outcome is unknown). Therefore it is re-
ally not appropriate to state that the woman's probability of bearing a boy is 
.514, because, upon conception, the sex of the fetus is already established. It 
would be more appropriate to discuss the probability before the baby is con-
ceived. 

Many events in life are inherently uncertain. Probability may be used to mea-
sure the uncertainty of the outcome of such events. For example, you may wish 
to learn the probability of survival to age 80, of developing cancer, or of becom-
ing divorced. This chapter attempts to cover some of the basic concepts of prob-
ability and set forth some rules and models that, if followed, can provide some 
quantitative estimates of the occurrence of various events. 

Probability statements are numeric, defined in the range of 0 to 1, never more 
and never less. A probability of 1.0 means that the event will happen with cer-
tainty; 0 means that the event will not happen. If the probability is .5, the event 
should occur once in every two attempts on the average. If the probability is 
close to 1.0, then the event is more likely to happen, and if the probability is 
close to 0, it is unlikely to happen. 

There are many ways of defining probability. Here is one of the simplest def-
initions: Probability is the ratio of the number of ways the specified event can 
occur to the total number of equally likely events that can occur. This definition 
was implicit in our example of estimating a woman's probability of bearing a 
boy baby. 



n EXAMPLE 1 

One coin: In a toss of a fair coin, there are two possible outcomes, a head (H) or 
a tail (T); that is, N = 2. So the probability of having a head equals 

1 
P(H) 

= 2 
- n 

Note: The word fair implies that the coin or dice are not loaded; that is, they will 
give a fair representation to each outcome in a large number of tosses. 

n EXAMPLE 2 

Two coins: In a toss of two coins, four outcomes are possible: HT, TH, TT, HH. 
(HT means heads on the first coin and tails on the second.) There are two help-
ful ways to ensure that all possible outcomes are listed—the tree diagram (Fig-

ure 5.1) and the contingency table (Table 5.1). 
Consider the following questions: What is the probability of flipping two 

heads? At least one head? No heads? One head and one tail? Not more than one 

Table 5.1 A Contingency Table 

Second Coin 

First coin 	 b.-- 

Second coin 

Figure 5.1 A Tree Diagram 
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The probability of an event, P(E), can be defined as the proportion of times a 
favorable event will occur in a long series of repeated trials: 

P(E) = 
number of favorable outcomes 

= 
N 	 number of possible outcomes 

(5.1) 

H 	 T 

First coin 	 H 	 HH 	 HT 
T 	 TH 	 TT 
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tail? We can tabulate the answers as follows: 

Probability of an Event 	 Favorable Events 

1 

	

P(2H) = 
4 	

HH 

3 

	

P(at least 1H) = 4 
	

HT, TH, HH 

1 

	

P(OH) = 4 
	

TT 

2 

	

P(1H and 1T) = 4 
	

HT, TH 

3 

	

P(not more than 1T) = 4 
	

HT, TH, HH 

	 n 

n EXAMPLE 3 

Dice: In a roll of a fair die, there are six equally possible outcomes (N = 6): 1, 2, 
3, 4, 5, and 6. You might ask, "What is the probability of rolling a particular 
number?" And the answer is 

P(even number) = 
3 
6 

P(2 or 3) = - 

3 
P(greater than 3) = 

6 
 n 

Mutually exclusive events, E,, are events that cannot happen simultaneously; 
that is, if one event happens, the other event cannot happen. Thus in the one- 
coin example, E 1  (heads) and E2  (tails) are mutually exclusive, and their proba-
bilities add up to 1. 

Denoted symbolically, the three basic properties of probability for mutually 
exclusive events are 

0 	 P(E,) 	 1 	 (5.2) 

P(E 1 ) + P(E2) + • • • + P(E,) = 1 	 (5.3) 

P(not E 1 ) = 1 — P(E1 ) 	 (5.4) 

where E 1 , E2, ... , E„ are mutually exclusive outcomes. 
By perusing our three examples, you can see that (1) the probability of an 

event is always between 0 and 1 (inclusive); it is never negative and never 
greater than 1; and (2) the sum of the probabilities of all mutually exclusive out- 

2 
6 
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comes is equal to 1; and (3) the probability of an event E i  not occurring is equal 

to 1 less the probability of E l . 

2 	 COMPLEMENTARY EVENTS 

The complementary event A is the complement of event A as shown in Fig-

ure 5.2. We observe that 

P(A) = sum of probabilities of outcomes in A + 

P(A) = sum of probabilities of outcomes in A = 1 

and Probability of (A) is 

P(A) + P(A) = 1 

Therefore, 

P(A ) = 1 — P(A) 

Figure 5.2 Complement of Event A 

.3 	 PROBABILITY RULES 

Two indispensable rules help answer the most common questions concerning 
the probability of compound events (those composed of two or more individ-
ual events). These are the multiplication rule and the addition rule. 

Multiplication Rule 

Two events are independent if the occurrence of one has no effect on the chance 
of occurrence of the other. The outcomes of repeated tosses of a coin illustrate 
independent events, for the outcome of one toss does not affect the outcome of 
any future toss. Note that "independent" and "mutually exclusive" are not the 
same. The occurrence of one independent event does not affect the chance of 
another such event occurring at the same time, whereas mutually exclusive 
events cannot occur simultaneously. 

=A 
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To determine the probability of occurrence of two independent events, we 
use the multiplication rule. The multiplication rule states that the probability of 
occurrence of two independent events, A and B, is equal to the product of the 
probabilities of the individual events. 

Symbolically, 

P(A and B) = P(A)P(B) 
	

(5.5) 

n EXAMPLE 4 

In tossing two coins, what is the probability that a head will occur both on the 
first coin (H 1 ) and on the second coin (H2)? The solution: 

(11 	 1 
P(H1  and H2) = [P(H1 )][P(H2)] = 

2)

y 

 = 
,\
2/ 4 n  

n EXAMPLE 5 

Suppose the probability that a typical driver will have an accident during a 
given year is What is the probability that two randomly selected drivers will 
both have an accident during the year? The solution: 

' 	 \ 	 1 
P = 

\ 10) \ 10, 	 100 

Conditional Probability Calculating the probability of an event using, in the de-
nominator, a subset of all possible outcomes will give a conditional probability. As 
we will see from Example 6, the probability of stopping smoking during preg-
nancy is 

768 
4075 = .188 

However, the probability of stopping smoking during pregnancy given that the 
subgroup consists of those who have 16 years of education is 

214 
.242 

884 

The .188 is the value of a simple probability and .242 is the value of a condi-
tional probability. Conditional probability is denoted by P(A B). It is the prob-
ability that A occurs, given that B has occurred, and is given by the following 
ratio: 
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MA and B) 
NA 1B) =  

P(B) 
providing P(B) is not equal to zero (5.6) 

The vertical line in P(A B) is read "given." 

n EXAMPLE 6 

From the data on stopping smoking during pregnancy given in Table 5.2, we 
can calculate several probabilities. For example, if A is the event of stopping 
smoking during pregnancy and B is the event that mothers have 16 years of ed-
ucation, then 

P(A) = - - = .188 
768

075 

is the probability of selecting a mother who has stopped smoking. The proba-
bility of selecting a woman who has 16 years of education is 

P(B) =
4
884  

= .2169 
075 

and the probability of selecting a mother who has both stopped smoking and 
has 16 years of education is 

214 
P(A A B) = 	 = 4075 .0525 

The conditional probability of stopping smoking during pregnancy given 
that the mother has 16 years of education can be obtained using the formula 

Table 5.2 Number of Mothers of Live-Born Infants Who Stopped Smoking During 
Pregnancy by Educational Status 

Years of Education (%) 

Smoking 
Status 0-11 yrs 12 yrs % 13-15 yrs 16 yrs Total /IA 

Stopped 42 9.7 308 16.9 204 21.8 214 24.2 768 18.8 
Did not 390 90.3 1515 83.1 732 78.2 670 75.8 3307 81.2 

Total 432 100.0 1823 100.0 936 100.0 884 100.0 4075 100.0 

SOURCE: U.S. National Natality Survey, 1980. 
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P(A A B) .0525 
MA 1B) = 	 = 	 = .242 

P(B) 	 .2169 

Note that the probability obtained using the last formula, P(A B) = .242, is the 
same as that obtained directly from the frequencies in Table 5.2, namely, 

214 
— .242 n 

884 

Let us consider the difference between P(A) and P(A B). P(A) gives the prob-
ability that event A occurs out of all possible outcomes, whereas P(A B) gives 
the probability that event A occurs given that we restrict ourselves to a subset of 
all possible B outcomes. These two probabilities are not the same unless the two 
events are independent. The general rule that permits us to make such a state-
ment is 

Events A and B are independent if 	 P(A 1B) = P(A) 

From Example 6 we can see that events A and B are not independent because 
P(A B) = .242 does not equal P(A) = . 1885. A modification of Example 3 illus-
trates how we can check if events A and B are independent. If A is the event of 
an even number on the toss of a fair die and B is the event that we consider only 
the first four numbers, then the two events A and B are independent because 
their probabilities are equal: 

1 	
4 
2 	 1 

2 P(A) — 3 
2 

= 	 and 	 P(A I B) = — 
6  

Addition Rule 

To determine the probability that one or another event (but not necessarily both) 
will occur, we use the addition rule. The addition rule states that the probabil-
ity that event A or event B (or both) will occur equals the sum of the probabili-
ties of each individual event less the probability of both. Symbolically, 

P(A or B) = P(A) + P(B) — P(A and B) (5.7) 

The reason for subtracting P(A and B) is that this portion would otherwise be in-
cluded twice, as you can see from Figure 5.3a, which is an example of a Venn di-
agram. In such a diagram, circles within a rectangular space represent events; 
and the relationship between those events is indicated by a separation or an in-
tersection of the circles. The area excluding A is denoted with a bar over it, A. 
The area of not A or not B is denoted as A B. 



Events A and B 
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(a) Nonmutually exclusive events 
	 (b) Mutually exclusive events 

igure 5.3 Venn Diagrams of Two Events 

n EXAMPLE 7 

In flipping two coins, you may wish to know the probability of having a head 
on the first coin (H 1 ), or on the second (H,), or on both (H 1 H2). To get the answer, 
use the addition rule: 

1 	 1 	 1 	 3 
P(H, or H2) = 

2 ± 2 4 4 

n EXAMPLE 8 

What is the probability that you will obtain a 3 or 4 on one toss of a die? The ad-
dition rule gives 

1 	 1 	 1 
P(3 or 4) = P(3) + P(4) — P(3 and 4) 	 + — 0 = 3 n 

6 6  

Recall that whenever two events are mutually exclusive, the probability of 
both events occurring is equal to zero. By tossing a 3, you have excluded the 
probability of tossing a 4. Likewise, you cannot simultaneously flip a head and 
a tail with a coin. Hence, the addition rule is somewhat simplified when the two 
events are mutually exclusive. The rule then becomes 

P(A or B or both) = P(A) + P(B) 	 (5.8) 

The P(A and B) term of equation 5.7 is zero; it drops out (Figure 5.3b). 

n EXAMPLE 9 

At birth, the probability that a U.S. female will survive to age 65 is approxi- 
mately that is, P(F 6 ) = Po . The probability that a male will survive to age 65 is 
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approximately that is, P(M 65) = What is the probability that a U.S. female 
will die before age 65? Using equation 5.4, we see that the probability of dying 
before age 65, P(Fd), is computed by subtracting from 1 the probability of sur-
viving to age 65: 

P(Fd ) = 1 — P(F65) = 1 — 80  = .2 

Carrying the example further, the following probabilities can be computed 
by appropriately applying the multiplication and addition rules: 

1. The probability that both will be alive at age 65: 

2\ ( 8 \  P = P(M65)P(F 65 ) (3 / = .533 

2. The probability that only the male will be alive at age 65: 

/ 
P = P(M65)P(Fd) = 3  ,1 	

0) 

= .133 

3. The probability that only the female will be alive at age 65: 

P = P(F65  and Md) = P(F65)P(Md) = 80  (1 32 ) = .267 

4. The probability that at least one of the two will be alive at age 65: 

P = P(either one or both will be alive) 

P(F65  and M65) + P(M65  and Fd) + P(F65  and Md) 

= .533 + .133 + .267 = .933 

This answer may also be obtained by finding the probability of the complement 
of both the male and the female dying; that is, 

1 — P(Md  and Fd) = 1 3 • 
1
20  = .933 n 
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,4 	 COUNTING RULES 

In computing the probabilities of various events, we first need to know in how 
many possible ways such events can occur. For example, if we wish to know the 
probability of having two girls and a boy in a three-child family, it is essential to 
know the order of their birth. How many different possibilities are there of hav-
ing two girls and a boy? The number of different outcomes is eight: 

girl girl girl 	 boy girl girl* 

girl girl boy* 	 boy girl boy 

girl boy girl* 	 boy boy girl 

girl boy boy 	 boy boy boy 

Here you can see that the three outcomes marked with asterisks qualify as suc-
cesses (two girls and a boy). 

You may need to know the number of different possibilities of a certain event 
in order to determine the denominator you need to use to compute a probabil-
ity. Three general rules are helpful in obtaining counts. 

Rule 1: • umber of Ways 

If an event A can occur in n 1  distinct ways and event B can occur in n 2  ways, then 
the events consisting of A and B can occur in n i  • n 2  ways. 

n EXAMPLE 10 

If you had three different diet (D) choices by amount of protein (low, medium, 
high) and three different choices by amount of fat (low, medium, high), there 
would be (n i )(n,) = (3)(3) = 9 different possible diets: 

D I : protein (low), fat (low) 
	

D4 : protein (low), fat (medium) 

D2:protein (medium), fat (low) 
	

D5 : protein (medium), fat (medium) 

D3:protein (high), fat (low) 
	

Do : protein (high), fat (medium) 

D7:protein (low), fat (high) 

D8:protein (medium), fat (high) 

Dy : protein (high), fat (high) n 

Rule 2: Permutations 

In determining the number of ways in which you can manage a group of ob- 
jects, you must first know whether the order of arrangement plays a role. For ex- 
ample, the order of arrangement of a person's missing teeth is important, but 
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the order of selecting a group for a committee is not, because any order results 
in the same committee. 

A permutation is a selection of r objects from a group of n objects, taking the 
order of selection into account. The number of different ways in which n objects 
may be arranged is given by n!. The exclamation mark stands for factorial, and 
the symbol n! (read "n factorial") means n(n – 1)(n – 2) • • 3 2 • 1. Thus 3! 
(i.e., three factorial) = 3 • 2 • 1 = 6, and 0! = 1. This last, 0! = 1 may seem arbi-
trary, but it is a mathematically necessary convention that keeps us from divid-
ing by zero. 

n EXAMPLE 11 

If we wish to identify vials of a medication by using three different symbols, x, 
y, and z, how many different ways can the vials be identified? The answer is 

3! = 3 2 1 = 6 

The six different identifications are xyz, xzy, yxz, yzx, zxy, and zyx. n 

Suppose we want to learn the number of ways of selecting r objects from a set 
of n objects and order is important. Here we would use the equation 

n! 
P(n,r) = 

(n – r 
(5.9) 

n EXAMPLE 12 

If there are three effective ways of treating a cancer patient—surgery (S), radia-
tion (R), and chemotherapy (C)—in how many different ways can a patient be 
treated with two different treatments if the order of treatment is important? The 
answer is given by 

3! 	 3 • 2 • 1  
P(3,2) = 	 =6 

(3 – 2)! 	 1 

or SR, RS, CS, SC, RC, and CR. n 

Rule 3: Combinations 

Sometimes we may wish to determine the number of arrangements of a group 
of objects when order is not important, as in selecting books from a shelf. A 
combination is a selection of a subgroup of distinct objects, with order not 
being important. The equation for obtaining the number of ways of selecting r 
objects from n objects, disregarding order, is 



n! 

)! 

C(n,r) = 
r!(n — 

(5.10) 
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where C denotes the total number of combinations of objects. 

n EXAMPLE 13 

Suppose that three patients with snakebites are brought to a physician. To his 
regret, he discovers that he has only two doses of antivenin. The three patients 
are a pregnant woman (w), a young child (c), and an elderly man (m). Before de-
ciding which two to treat, he examines his choices: 

3! 	 3 •  2 1 
C(3,2) = 	 = 3 

2!(3 — 2)! 	 2 • 1 

The three choices are wc, wm, cm. Note that cw, mw, and me are the same as the 
first three because order does not matter. n 

5.5 	 PROBABILITY DISTRIBUTIONS 

A key application of probability to statistics is estimating the probabilities that 
are associated with the occurrence of different events. For example, we may 
wish to know the probability of having a family of two girls and one boy or the 
probability that two out of three patients will be cured by a certain medication. 
If we know the various probabilities associated with different outcomes of a 
given phenomenon, we can determine which outcomes are common and which 
are not. This helps us reach a decision as to whether certain events are signifi-
cant. A complete list of all possible outcomes, together with the probability of 
each, constitutes a probability distribution. 

The outcome of events may be described numerically (e.g., the number of 
three-boy families). The symbol X usually denotes the variable of interest. This 
variable, which can assume any number of values, is called a random variable 
because it represents a chance (random) outcome of an experiment. Thus, we 
can say that a probability distribution is a list of the probabilities associated 
with the values of the random variable obtained in an experiment. Random 
variables may be either discrete or continuous. Only discrete variables are dis-
cussed in this chapter. 

Three examples of probability distribution are illustrated in Table 5.3. As the 
third example in the table shows, if a family is selected at random, the proba-
bility that it is a three-boy family is .125. In this example, the number of boys is 
the random variable. 

From the distributions in Table 5.3, we can again see that the sum of the prob-
abilities of a set of mutually exclusive events always equals 1. 
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Table 5.3 Examples of Probability Distribution 

Toss of Two Coins Roll of a Die Sex of Three-Child Family 

E P(E) E P(E) E P(E) 

1 1 
HH 1 3 boys* .125 

4 6 
1 1 

HT 2 2 boys, 1 girl .375 
4 6 
1 1 

TH 3 1 boy, 2 girls .375 
4 6 
1 1 

TT 4 3 girls .125 
4 6 

1 
1.0 5 

6 
1.000 

1 
6 

6 
1.0 

*For ease of computation, we assume that P(boy) = .5. 

BINOMIAL DISTRIBUTION 

In practice, we usually work with distributions that are reasonable approxima-
tions to theoretical distributions. In constructing a frequency table, we can 
obtain an estimate of the probability distribution by visualizing the relative 
frequency associated with each possible outcome. Having this information, we 
can make statements about how common any given event is. 

Various phenomena follow certain underlying mathematical distributions. 
One of the most useful, the binomial distribution, serves as a model for out-
comes limited to two choices—sick or well, dead or alive, at risk or not at risk. 
For such a dichotomous population, we may wish to know the probability of 
having a number of r successes on n different attempts, where the probability of 
success on any one attempt is p. 

As an example, let's again consider the probability that a couple planning 
three children will have two girls and one boy. Suppose we wonder whether the 
three children will arrive in the sequence GGB. If we assume that the probabil-
ity of having a girl is .5, then the probability of the sequence GGB occurring is 
(; ) ; = 81 . However, two girls and a boy may arrive in three different ways-
GGB, GBG, BGG—as indicated by C(3,2) = 3, where C(3,2) denotes the combi-
nation of three things taken two at a time. Since the probability of each sequence 
is - 18  , the probability of having two girls and a boy in any sequence is 
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/ 1 )
3  \ 8 = 3(.125) = .375 

as indicated in the third probability distribution in Table 5.3. 
The probability distribution for this example is algebraically obtained from 

the expansion of the binomial term (p + q)", where p is the probability of a suc-
cessful outcome, q = 1 – p is the probability of an unsuccessful outcome, and n 
is the number of trials or attempts. The binomial expansion is applicable, pro-
viding that 

1. Each trial has only two possible outcomes—success or failure 

2. The outcome of each trial is independent of the outcomes of any other trial 

3. The probability of success, p, is constant from trial to trial 

Under these conditions, the probability of the sequence GGB is 

p p(1 – p) = p2  q 

G G B 

and the probability of any sequence of two girls and a boy is 

3! 	 /1) 2  /1' 

C(3,2)p2(q) 	 – 2)! 2) \ 2 / 

1) 3  
= 3( 	 = .375 

2 

where C(3,2) becomes the binomial coefficient giving the number of different se-
quences of three children consisting of two girls and one boy. 

In general, the probability of an event consisting of r successes out of n 
trials is 

n! 
P(r successes) = 

r!(n– rr
Wan -r  

where 	 n = the number of trials in an experiment 
r = the number of successes 

n – r = the number of failures 
p = the probability of success 
q = 1 – p, the probability of failure 

(5.11) 

The expression 

n! 
r!(n – 

rqn 
r 
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n = 3 
P = . 5  

= 1.5  
= V75 = .87 

250 — 

125 

0 	 1 	 2 	 3 

Number of successes (boys) 

Figure 5.4 Example of Binomial Distribution 

is a term from the binomial expansion. The entire expansion lists the terms for r 
successes and (n — r) failures from the binomial distribution: 

3 ! va2 	 3 ! 
(P  + q)3 	 q3  + 1 1 (3 	 1)! " 	 2!(3 	 2)! 

	 p3 
 

q3 3pq2 3p2 	 p3 

P(3F) 	 P(iS, 2F) 	 P(2S, iF) 	 P(3S) 

where F = failure, and S = success. If a "success" means bearing a girl (p = .5), 
equation 5.12 reduces to 

03 	 ( 1 3  ± 3 ( 1 \ ( 1 2  + 3  (1 2 (1 ± (1) 3  

2) 	 2/ 2) 	 2/ 2) 	 2) 

= .125 + .375 + .375 + .125 ---- 1.000 	 (5.13) 

= P(3B) + P(1G, 2B) + P(2G, 1B) + P(3G) 

Equation 5.13 shows that the binomial expansion yields the binomial distribu-
tion illustrated initially in the third example in Table 5.3 and visually portrayed 
in Figure 5.4. 

It is essential that you gain a feeling for the meaning of a binomial term, so 
that you will then be able to construct or interpret one for any occasion. Figure 
5.5 should enable you to understand the anatomy of the binomial term. Note es-
pecially that in a binomial distribution, r (the number of favorable outcomes) 
serves as the random variable. Using the probability distribution given in equa-
tion 5.11, you can find the following probabilities in a three-child family: 

(5.12) 

(p + 

P(x) 

375 — MN. 	 =OP 
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Probability of success on a trial 

Number of successes 

Probability of failure on a trial 

Number of failures                                           

n!  
r!(n-r)!   

(n-r) 
q p 

Number of ways an event can occur 	 Probability of an event with r successes and n-r failures 

Figure 5.5 Identification of the Components of the Binomial Term 

3B 	 = .125 

2G, 1B 	 = .375 

At most 2G (3B; 2B, 1G; 1B, 2G) = .125 + .375 + .375 = .875 

At least 1B (3B; 2B, 1G; 1B, 2G) 	 = .125 + .375 + .375 = .875 

The probabilities of a binomial term can be obtained by reading them directly 
from the binomial probability table found in Appendix A. A small portion of 
this table is reproduced in Table 5.4. 

n EXAMPLE 14 

What is the probability of having two girls and one boy in a three-child family 
if the probability of having a boy is .5? 

From the calculations in equation 5.13, we can see that 

P(2G, 1B) = 	
 3! 	 /1\ 2  (1) 1  

= 3(125) = .375 
2!(3 — 2)! 2/ 2 

Looking at Table 5.4 with n = 3, p = .5, and r = 2, we again find that P = .375. 
n 

Table 5.4 Portion of Binomial Probability Table 

P 

n r 10 .25 1/3 .50 

0 .7290 .4219 .2963 .1250 

1 .2430 .4219 .4444 .3750 

3 2 .0270 .1406 .2222 (.3750)  

3 .0010 .0156 .0370 .1250 
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The binomial expansion is used to obtain the probability of various events 
when n is small, say 30 or less. When n is large, you should see the Gaussian 
(normal) distribution, discussed in the next chapter, as an approximation. To do 
this, you need to know the mean and the standard deviation of the binomial dis-
tribution, and we will consider these in Chapter 11. 

Conclusion 

Probability measures the likelihood that a particular event will or will not occur. 
In a long series of trials, probability is the ratio of the number of favorable out-
comes to the total number of equally likely outcomes. Permutations and combi-
nations are useful in determining the number of outcomes. If compound events 
are involved, we need to select and apply the addition rule or the multiplication 
rule to compute probabilities. The outcome of an experiment, together with its 
respective probabilities, constitutes a probability distribution. One very com-
mon probability distribution is the binomial. It presents the probabilities of var-
ious numbers of successes in trials where there are only two possible outcomes 
to each trial. 

Vocabulary List 

addition rule 
binomial distribution 
binomial term 
combination 
conditional probability 
contingency table 

equally likely events 
factorial 
independent events 
multiplication rule 
mutually exclusive 

events 

permutation 
probability 
probability distribution 
random variable 
tree diagram 
Venn diagram 

Exercises 

	

5.1 	 Two coins are tossed and the results observed. Find the probabilities of observing 
zero heads, one head, two heads. 

	

5.2 	 Take two coins, toss them 20 times, and record the number of heads observed for 
each toss. Compute the proportion of zero heads, one head, and two heads, and 
compare the results with the expected results you computed in Exercise 5.1. 

	

5.3 	 A fair coin is tossed three times and the number of heads observed. Determine the 
probability of observing 
a. exactly two heads 
b. at least two heads 
c. at most two heads 
d. exactly three heads 

	

5.4 	 A couple is planning to have three children. Find the following probabilities by 
listing all the possibilities and using equation 5.1: 
a. two boys and one girl 
b. at least one boy 
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c. no girls 
d. at most two girls 
e. two boys followed by a girl 
How does (e) differ from (a)? 

	

5.5 	 Suppose you observe the result of a throw of a single fair die. How many times 
would you expect to observe a 1 in 60 throws? How many times would you ex-
pect to observe each of the other possibilities (2, 3, 4, 5, 6) in 60 throws? 

	

5.6 	 Toss a die 60 times and record the frequency of occurrence of 1, 2, 3, 4, 5, 6. Com- 
pare your results with those in Exercise 5.5. In your judgment, is the die you 
tossed a fair one? (You will learn in Chapter 12 how to apply a statistical test to 
determine the fairness of a die.) 

	

5.7 	 On a single toss of a pair of fair dice, what is the probability that 
a. a sum of 8 is observed? 
b. a sum of 7 or 11 comes up? 
c. a sum of 8 or a double appears? 
d. a sum of 7 appears and both dice show a number less than 4? 

	

5.8 	 A ball is drawn at random from a box containing 10 red, 30 white, 20 blue, and 
15 orange balls. Find the probability that it is 
a. orange or red 
b. neither red nor blue 
c. not blue 
d. white 
e. red or white or blue 

	

5.9 	 In an experiment involving a toxic substance, the probability that a white mouse 
will be alive for 10 hours is 7/10, and the probability that a black mouse will be 
alive for 10 hours is 9/10. Find the probability that, at the end of 10 hours, 
a. both mice will be alive 
b. only the black mouse will be alive 
c. only the white mouse will be alive 
d. at least one mouse will be alive 

	

5.10 	 If an individual were chosen at random from Table 2.2, what is the probability 
that that person would be 
a. a vegetarian? 
b. a female? 
c. a male vegetarian? 

	

5.11 	 Suppose a person is randomly selected from Table 3.1. Find the probability that 
he or she 
a. has completed high school or technical school 
b. is a smoker 
c. is physically inactive (code number = 1) 
d. is a physically inactive smoker 
e. has a serum cholesterol greater than 250 and a systolic blood pressure above 

130 
f. has a blood glucose level of 100 or less 

5.12 In how many ways can five differently colored marbles be arranged in a row? 
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5.13 In how many ways can a roster of 4 club officers be selected from 10 nominees so 
that the first one selected will be president; the second, vice-president; the third, 
secretary; and the fourth, treasurer? 

5.14 Compute 
a. P(8,3) 
b. P(6,4) 

5.15 In how many ways can a committee of five people be chosen out of nine people? 

5.16 	 Calculate 
a. C(7,4) 
b. C(6,4) 
Compare (b) with Exercise 5.14b. What do you observe? 

5.17 In how many ways can 10 objects be split into two groups containing 4 and 6 ob-
jects respectively? 

5.18 About 50% of all persons three years of age and older wear glasses or contact 
lenses. For a randomly selected group of five people and using equation 5.11, 
compute the probability that 
a. exactly three wear glasses or contact lenses 
b. at least one wears them 
c. at most one wears them 

5.19 If 25% of 11-year-old children have no decayed, missing, or filled (DMF) teeth, 
find the probability that in a sample of 20 children there will be 
a. exactly 3 with no DMF teeth 
b. 3 or more with no DMF teeth 
c. fewer than 3 with no DMF teeth 
d. exactly 5 with no DMF teeth 
(Hint: Refer to the first example in Table 5.3.) 

5.20 It is known that approximately 10% of the population is hospitalized at least once 
during a year. If 10 people in such a community are to be interviewed, what is the 
probability that you will find 
a. all have been hospitalized at least once during the year? 
b. 50% have been hospitalized? 
c. at least 3 have been hospitalized? 
d. exactly 3 have been hospitalized? 
(Hint: Refer to the first example in Table 5.3.) 

5.21 	 Seventy-five percent of youths 12-17 years of age have a systolic blood pressure 
less than 136 mm of mercury. What is the probability that a sample of 12 youths 
of that age group will include 
a. exactly 4 who have a systolic pressure greater than 136? 
b. no more than 4 who have a blood pressure greater than 136? 
c. at least 4 who have a blood pressure greater than 136? 
(Hint: Refer to the first example in Table 5.3.) 

5.22 Assuming that, of all persons 17 years and over, half the males and one-third of 
the females are classified as presently smoking cigarettes, find the probability 
that in a randomly selected group of 10 males and 15 females 
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a. exactly 10 smoke (4 males, 6 females) 
b. all smoke 
c. none smoke 
(Hint: Refer to the first example in Table 5.3.) 

	

5.23 	 Define the following: 
a. equally likely events 
b. mutually exclusive events 
c. independent events 
d. probability 
e. conditional probability 
f. probability distribution 
g. random variable 

5.24 Define and give an example of 
a. combination 
b. permutation 
c. factorial 
d. addition rule 
e. multiplication rule 

	

5.25 	 Using the data from Table 5.2, let the event 

A = a mother with less than 12 years of education 

B = a mother who has quit smoking 

a. Calculate P(A). 
b. Calculate P(B). 
c. Calculate P(B I A). 
d. Indicate whether events A and B are independent. (Hint: Use equations 5.5 

and 5.6.) 

	

5.26 	 a. Define the binomial distribution. 
b. Define the components of a binomial term. 

5.27 Using the data from Table 3.2 and Table 3.3, prepare a new frequency table of sys-
tolic blood pressure for nonsmokers and smokers. Using this new table, let the 
events 

A = a nonsmoker 

B = a smoker 

C = a systolic blood pressure of 170 or greater 

Find 
a. P(A) 
b. P(B) 
c. P(C) 
d. P(C I A) 
e. P(C I B) 
Compare (d) and (e) and comment. Are smoking status and blood pressure level 
independent? 
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5.28 Use Table 5.2 to compute some probabilities you could use in persuading some-
one that the level of education and smoking are inversely related. 

5.29 	 Phenylketonuria (PKU) is a genetic disease that occurs if the person inherits two 
recessive genes (meaning that this person has the inability to metabolize the 
amino acid, phenylalanine, into another amino acid, tyrosine). The possible ge-
netic combinations are: two dominant genes (no disease), one dominant and one 
recessive gene (no disease, but a carrier), and two recessive genes (have PKU). 
Calculate the probability of a child having the disease if 
a. both parents are carriers 
b. one parent is a carrier, the other has two dominant genes 
c. one parent has the disease, the other has two dominant genes 
d. both parents have the disease 

5.30 	 Using the information from Exercise 5.29, calculate the probability of a child 
being a carrier if 
a. both parents are carriers 
b. one parent is a carrier, the other has two dominant genes 
c. one parent has the disease, the other has two dominant genes 
d. both parents have the disease 

5.31 	 Using the information from Exercise 5.29, calculate the probability of a child 
having two dominant genes if 
a. both parents are carriers 
b. one parent is a carrier, the other has two dominant genes 
c. one parent has the disease, the other has two dominant genes 
d. both parents have the disease 

5.32 	 Sickle cell anemia is a genetic disease that occurs if the person inherits two reces- 
sive genes. The possible genetic combinations are: two dominant genes (no dis-
ease), one dominant and one recessive gene (has sickle cell trait, which means the 
person is a carrier) and two recessive genes (have sickle cell anemia). Calculate 
the probability of a child having the disease if 
a. both parents have sickle cell trait 
b. one parent is a carrier, the other has two dominant genes 
c. one parent has the disease, the other has two dominant genes 
d. both parents have the disease 

5.33 	 Using the information from Exercise 5.32, calculate the probability of a child 
being a carrier if 
a. both parents have sickle cell trait 
b. one parent is a carrier, the other has two dominant genes 
c. one parent has the disease, the other has two dominant genes 
d. both parents have the disease 

5.34 	 Using the information from Exercise 5.32, calculate the probability of a child 
having two dominant genes if 
a. both parents have sickle cell trait 
b. one parent is a carrier, the other has two dominant genes 
c. one parent has the disease, the other has two dominant genes 
d. both parents have the disease 



3 The Normal Distribution 

Chapter Outline 

6.1 The Importance of Normal Distributions 
Explains why the normal distribution is so important in statistical 
analysis 

6.2 Properties of the Normal Distribution 
Lists and explains the properties of the normal distribution, so valu- 
able to statistical theory and methodology 

6.3 Areas Under the Normal Curve 
Presents specific examples to demonstrate the interpretation and use 
of a table of areas that correspond to intervals of the standard score 

Learning Objectives 

After studying this chapter, you should be able to 

1. State why the normal distribution is so important 

2. Identify the properties of the normal distribution 

3. Interpret the mean and the standard deviation in the context of the normal curve 

4. List the differences between the normal and the standard normal distribution 

5. Explain the standard normal score Z = (x — pt)/o- 

6. Compute the percentage of areas between given points under a normal curve 

7. Compute percentiles of specified variables by using a table of standard normal 
scores 

6.1 	 THE IMPORTANCE OF NORMAL DISTRIBUTION 

Physicians often rely on a knowledge of normal limits to classify patients as 
healthy or otherwise. For example, a serum cholesterol level above 200 mg/di 
is widely regarded as indicating a significantly increased risk for coronary heart 
disease. An accurate determination of such a value, whether or not based on a 
mathematical model, is of critical importance. The decision may be a matter of 

78 
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life or death, because the physician uses the findings to decide what type of 
treatment to prescribe for a patient. It would be unfortunate, perhaps tragic, if 
the "normal limits" were faulty. In that case, some patients might receive an un-
necessary treatment, while others might fail to receive a needed treatment. 

Serum albumin is the chief protein of blood plasma. For any group of per-
sons, the concentrations of serum albumin tend to follow a normal distribu-
tion. The normal limits for albumin are calculated by adding and subtracting 
2 standard deviations from the mean of a large set of observations obtained 
from a group of presumably healthy persons. This calculation provides the 
limits that contain the middle 95% (the "normal range") of observations but 
exclude the remaining 5%, of which 2.5% falls in the lower tail and 2.5% in the 
upper tail. Extreme observations, those in the tails, are considered unusual 
and may be regarded as presumptive evidence of a health problem. However, 
not all variables follow a normal distribution. Two well-known counterexam-
ples are urea and alkaline phosphatase. For these, use of the same method 
would give incorrect "normal limits" that would not include 2.5% of the ob-
servations in each tail. In response to this problem, medical statisticians Elve-
back, Guillier, and Keating (1970) have suggested that "clinical limits" rather 
than "normal limits" be used. Clinical limits are the lower and upper 2.5 per-
centage points for any distribution, normal or otherwise, of healthy persons. 
Clinical limits are obtained empirically, not by adding and subtracting 2 stan-
dard deviations from the mean. Use of clinical limits is greatly preferred to use 
of normal limits, because the term normal limits has been grossly misused and 
fallen into disrepute. 

In Chapter 5, we learned how a distribution of a variable gives an idea of the 
values of its population. Knowing that a variable is distributed normally can be 
especially helpful in drawing inferences as to how frequently certain observa-
tions are likely to occur. 

The normal distribution, perhaps the most important of statistical distribu-
tions, was first discovered by the French mathematician Abraham Demoivre in 
1733, and rediscovered and applied to the natural and social sciences by the 
French mathematician Pierre Simon de Laplace and the German mathematician 
and astronomer Karl Friedrich Gauss in the early nineteenth century. Sir Francis 
Galton, a cousin of Charles Darwin, first applied the normal curve to medicine. 

Scholars like to refer to the normal curve as the Gaussian distribution. This 
preference is in reaction to a tendency of some persons to feel that anything not 
"normally" distributed is "abnormal." However, in popular practice, most sta-
tisticians and scientists still call it the normal distribution. 

There are a legion of reasons why the normal distribution plays such a key 
role in statistics. For one thing, countless phenomena follow (or closely approx-
imate) the normal distribution. Just a few of them are height, serum cholesterol, 
life span of light bulbs, body temperature of healthy persons, size of oranges, 
brightness of galaxies. But there are likewise countless phenomena that do not 
follow the normal distribution, ranging from individual annual income to 
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clinical laboratory readings for urea, magnesium, or alkaline phosphatase. An-
other reason for the normal distribution's popularity is that it possesses certain 
mathematical properties that make it attractive and easy to manipulate. Still an-
other reason is that much statistical theory and methodology was developed 
around the assumption that certain data are distributed approximately nor-
mally. Normal distribution is the basis for the use of inferential statistics. 

6.2 	 PROPERTIES OF THE NORMAL DISTRIBUTION 

The normal distribution has three main properties. First, it has the appearance 
of a symmetrical bell-shaped curve extending infinitely in both directions. It is 
symmetrical about the mean ,(1. Not every bell-shaped curve, however, is a nor-
mal distribution. 

Second, all normal distributions have a particular internal distribution for 
the area under the curve. Whether the mean or standard deviation is large or 
small, the relative area between any two designated points is always the same. 
Let us look at three commonly used points along the abscissa. In Figure 6.1 we 
see that 68.26% of the area is contained within ,u ± 10 -, 95.45% within ± 2o-, 
and 99.74% within ,u, ± 3o- (see Table A, inside back cover). 

	 99.74% 	  

	 95.45% 	  

68 26% 

55 	 70 	 85 	 100 	 115 	 130 	 145 

p-3a 	 p -2a 	 p-1 a 	 11 	 p+ 	 p+2a 	 p+ 

Figure 6.1 Important Divisions of the Normal Distribution of lOs 
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The amount of area undcr the normal curve is directly proportional to the 
percentage of raw scores. For example, if you have .20 of the total area of 1.0, 
you have .20 or 20% of the raw scores. The total area under the curve in Fig-
ure 6.1 equals 1.0. This is a nice feature. Because of it, the area under the curve 
between any two points can be interpreted as the relative frequency (or proba-
bility of occurrence) of the values included between those points. 

Third, the normal distribution is a theoretical distribution defined by two pa-
rameters: the mean au and the standard deviation a- . The exponential equation 
for the normal distribution is 

y — gv2-- ex [ — 2  ( 	 kL ) 2 1 
_  1 	 1 x (6.1) 

where y is the height of the curve for a given value x, exp is the base of the nat-
ural logarithms (approximately 2.71828), and 77" is the well-known constant 
(about 3.141519). 

AREAS UNDER THE NORMAL CURVE 

Let us assume that the IQ of a given population is normally distributed with 
,u = 100 and a-  = 15. In that case, 68.3% of the IQ scores (rounded up) should 
fall between 85 and 115 (100 ± 15), as shown in Figure 6.1. Similarly, we would 
expect approximately 95% of the IQs to fall between 70 and 130, 2.5% above 130, 
and 2.5% below 70. To find the proportion of persons with IQ scores between 
130 and 135, we need a table of normal curve areas. But first, let us see how to 
use such a table. 

Because it would be out of the question to tabulate the areas of all possible 
normal curves, we use the feature that all normal curves are symmetrical and 
have an area of 1.0. Thus, dealing with one normal curve is like dealing with 
any other, provided we use a standardized unit. Such a unit is the standardized 
score, Z, which gives the relative position of any observation in the distribution. 
If a variable is normally distributed, then any individual raw score can be con-
verted into a corresponding Z score. Sometimes Z is referred to as Z score, Z 
value, or standard normal score. Thus, for the normal curve, the Z score is ob-
tained by 

x ,u z = 	  
a- 

(6.2) 

Standardized observations provide an indication as to how many standard de-
viations an observation falls either below or above the mean. You can appreci-
ate the effect of this transformation on the mean and the standard deviation of 
x by following a few simple steps: 
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Variable 	 Mean 	 Standard Deviation 

Step 1: Start with x 
Step 2: Subtract 	 x - 

1 	 - 
Step 3: Divide by o- 	 Z = (x - ) = x  

o- 	 (3- 

- µ = 0 

( I  )0 = 0 
o-  

(1 

In step 1, given the variable x, the mean isµ and the standard deviation is a. In 
step 2, on subtraction of ,u, the mean is shifted fromµ to 0, but a- is left un-
changed. In step 3, the variable is divided by the mean remains 0, and a re-
duces to 1. 

The net effect of this so-called Z transformation is to change any normal dis-
tribution to the standard normal distribution, where µ = 0 and a-  = 1. An ex-
ample of this transformation is how IQ scores are established. The population is 
defined as all those who take the test. All of the scores are tabulated and a pop-
ulation mean and population standard deviation are calculated. The mean is 
given a score of 100 or the 50th percentile. Each standard deviation is estab-
lished at 15 points. This example will be used throughout the chapter to explain 
how the normal distribution works. 

It is this distribution that takes on prominence because of its use in setting 
confidence limits and tests of hypotheses. Areas for the standard normal distri-
bution are listed in Table A (inside back cover). Here are a few pointers for any-
one using it for the first time. Figure 6.2 shows areas under the standard normal 
curve between various points along the abscissa. The proper use of Table A may 

Z -3 	 -2 	 -1 	 0 
	 1 	 2 
	

3 

Figure 6.2 Areas Under the Standard Normal Curve 
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be demonstrated by finding the areas between different points along the ab-
scissa. The area under the curve, A, is tabulated in the body of the table; it is that 
area between zero and some point Z to the right of zero. Z values are given in 
the left margin. Whole numbers and tenths are read at the left; hundredths 
along the top, horizontally. Further, since the normal curve is symmetrical, the 
area between zero and any negative point is equal to the area between zero and 
the corresponding positive point. Remember that because the area under the 
curve is equal to 1 and the curve is symmetrical about zero, the area to the right 
of Z can be computed by subtracting from .5. (Another way of explaining this 
is that area A (between the mean and Z) plus area B (Z and beyond) always 

equals .5.) 
Now let us extend our IQ score example to illustrate various uses of Table A. 

n EXAMPLE 1 

What is the proportion of persons having IQs between 100 and 120? 
Sketch a curve like the one in Figure 6.3. Shade in the area you wish to find. 

Transform the IQ variable to a Z score. The Z corresponding to x = 100 is 

Z= 
x — ,u, 100 — 100 = 0  

15 

and the Z corresponding to x = 120 is 

120  — 100 20  Z — 
	 = 	 = 1.33 

15 	 15 

By using Table A to find the area for a Z of 1.33, you will find the answer to be 
.4082. Therefore, the proportion of persons having IQs between 100 and 120 is 
.4082, about 41%. n 

10 
	

100 
	

120 

0 
	

1.33 

Figure 6.3 Area Corresponding to IQs Between 100 and 120 
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n EXAMPLE 2 

What proportion of persons has IQs greater than 120? 
Again, sketch a curve, this time following the model of Figure 6.4. Because 

the area to the right of Z = 0 is .50, and the area between Z = 0 and 1.33 is 
0.4082, by subtraction you will obtain the area beyond Z of 1.33, namely, 
.5000 — .4082 = .0918. So the answer is that about 9% have IQs over 120. n 

IQ 1 00 120 

0 1.33 

Figure 6.4 Area Corresponding to lOs Above 120 

n EXAMPLE 3 

What is the proportion of persons with IQs between 80 and 120? 
That is the same as asking what proportion is found under the normal curve 

between the standardized values of Z between —1.33 and +1.33. Using the 
symmetry argument, you simply double the area between Z = 0 and 1.33, 
namely, 2(.4082) = .8164; that is, 82% have IQs between 80 and 120. Figure 6.5 
illustrates this solution. n 

We should point out that a —Z score means that the corresponding raw score 
will be lower than the mean. In this example, a raw score of 80 corresponds to a 

IQ 80 

-1.33 

1 00 

0 

120 

1.33 

Figure 6.5 Area Corresponding to 'Qs Between 80 
and 120 
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1.67 

.1293 + .4525 = .5818 

.1293 
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—Z score of —1.33. Notice that the area between the mean and Z (both labeled 
area A) are exactly the same; the only difference is that the positive Z score rep-
resents the area above the mean and the —Z represents the area below the mean. 
A Z score of —1.33 means that a raw score of 80 is 1.33 standard deviations 
below the mean and a Z score of 1.33 means that a raw score of 120 is 1.33 stan-
dard deviations above the mean. 

n EXAMPLE 4 

What is the proportion of persons with IQs between 95 and 125? 
The corresponding Z scores for two areas, A l  and A2, are 

95 —  100 —5  
Z= 	 = 	 = —.33 

15 	 15 

A2 : Z 
125 — 100 25 

= 1.67 
15 	 15 

Figure 6.6 illustrates the two areas. 
The area (A 1 ) between Z = 0 and —.33 is the same, of course, as that between 

0 and +.33. In Table A, we see that A l  is .1293 and that A 2, between Z = 0 and 
1.67, is .4525. Thus A l  + A2  = .1293 + .4525 = .5818. The answer, then, is that 
about 58% of this population have IQs between 95 and 125. n 

Figure 6.6 Area Corresponding to lOs Between 95 
and 125 

Table A may also be used to determine the Z value that corresponds to any 
given area, as, for instance, the upper 10% of the curve. Consequently, we can 
obtain the value on the abscissa that corresponds to the 90th percentile, P90 . 

n EXAMPLE 5 

What is the Z value of the normal curve that marks the upper 10% (or 90th per-
centile) of the area? 



50- 10 = 40 
Upper 10% 

40 	 (area of .10) 

1.28 

50 
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Figure 6.7 Normal Deviate Corresponding to the Upper 

10% of IQs 

The desired Z score is that value corresponding to .40 of the area, as Figure 
6.7 illustrates. In Table A the value is found to be approximately Z = 1.28. n 

n EXAMPLE 6 

What is the 90th percentile of IQ scores? 
This is the logical extension of Example 5. We just found the Z of the 90th per-

centile to be 1.28. But what does this mean in terms of IQs? The answer is found 
by a simple application of equation 6.2. 

ia  

	

Z x   	
o- 

x — 100 
1.28 = 	  

15 

100 
	

1.28 

IQ 
	

0 
	

119.2 

Figure 6.8 90th Percentile of the Distribution of IQs 
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Therefore 

x = 	 Z (T (formula) 

x = 1.28(15) + 100 = 119.2 (example) 

Thus 119.2 is the 90th percentile of IQ scores, as illustrated in Figure 6.8. n 

Knowing how to compute areas under a normal curve makes it easy to find 
the proportion (probability) of persons possessing certain cholesterol values, 
heights, or any other variable that is normally distributed. Knowing the proba-
bility of a given event allows us to draw appropriate inferences as to the ex-
pected occurrence of that event. 

Conclusion 

The normal distribution is an important concept for a number of reasons. It has 
been used to define "normal limits" for clinical variables. Many variables fol-
low a normal distribution. The assumption of normality proves extremely use-
ful because of the exceptional properties of the distribution. We can quickly 
reduce any normal distribution to the standard normal distribution by trans-
forming the variable to a normal deviation Z score. Because these Z scores and 
the normal curve areas corresponding to them are conveniently tabulated, we 
are able to compute the probability of occurrence of various events and thus to 
decide about the degree of uniqueness of those events. 

Vocabulary List 

bell-shaped curve 
clinical limits 
exponential equation 
normal distribution 

(Gaussian 
distribution) 

normal limits 
percentile 
standard normal 

distribution 

standarized score 
Z score (Z value; 

standard normal 
score) 

Exercises 

6.1 	 Find the areas under the normal curve that lie between the given values of Z. 
a. Z = 0 and Z = 2.37 
b. Z = 0 and Z = —1.94 
c. Z = —1.85 and Z = 1.85 
d. Z = —0.76 and Z = 1.13 
e. Z = 0 and Z = 3.09 
f. Z = —2.77 and Z = —0.96 

6.2 	 Determine the areas under the normal curve falling to the right of Z (or to the left 
of —Z). 
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a. Z = 1.73 
b. Z = —2.41 and Z = 2.41 
c. Z = 2.55 
d. Z = —3 and Z = 3 
e. Z = 5 

6.3 What Z scores correspond to the following areas under the normal curve? 
a. area of .05 to the right of +Z 
b. area of .01 to the left of — 
c. area of .05 beyond ±Z 
d. area of .01 beyond ±Z 
e. area of .90 between -±Z 
f. area of .95 between ±Z 

6.4 Find the standard normal score for 
a. the 95th percentile 
b. the 80th percentile 
c. the 50th percentile 

6.5 The accompanying figure shows the assumed distribution for systolic blood 
pressure readings of a large male population. 
a. Determine the normal deviates Z for the various cutoff points. 
b. Find the equivalent cutoff points in terms of systolic blood pressures if the 

mean reading is 130 and the standard deviation is 17. 

Hypotensive 	 Borderline Normal Borderline Hypertensive 

6.6 If the heights of male youngsters are normally distributed with a mean of 
60 inches and a standard deviation of 10, what percentage of the boys' heights 
(in inches) would we expect to be 
a. between 45 and 75? 
b. between 30 and 90? 
c. less than 50? 
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d. 45 or more? 
e. 75 or more? 
f. between 50 and 75? 

	

6.7 	 For Exercise 6.5, find the 95th percentile. 

	

6.8 	 An instructor is administering a final examination. She tells her class that she will 
give an A to the 10% of the students who earn the highest grades. Past experience 
with the same examination has shown that the mean grade is 75 and the standard 
deviation is 8. If the present class runs true to form, what grade would a student 
need in order to earn an A? 

6.9 Assume that the age at onset of disease X is distributed normally with a mean of 
50 years and a standard deviation of 12 years. What is the probability that an in-
dividual afflicted with X had developed it before age 35? 

6.10 a. What is the distinction between a normal distribution and the standard nor-
mal distribution? 

b. Why do statisticians prefer to work with the standard normal distribution 
rather than the normal distribution? 

6.11 a. Describe the normal distribution. 
b. Give two examples of random variables that appear to be normally distrib-

uted. 
c. What is the probability that the value of a randomly selected variable from a 

normal distribution will be more than 3 standard deviations from its mean 
value? 

6.12 a. Suppose that 25-year-old males have a remaining mean life expectancy of 55 
with a standard deviation of 6. What proportion of 25-year-old males will live 
past 65? 

b. What assumption do you have to make in (a) to obtain a valid answer? 

6.13 Explain why "clinical limits" may be more appropriate than "normal limits" in 
classifying certain clinical values as "abnormal." 

6.14 If IQ scores are normally distributed with it, = 100 and o-  = 15, what is the prob-
ability of a randomly selected subject with an IQ between 100 and 133? 

100 

0 

133 

2.2 
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6.15 A standard IQ test produces normally distributed scores with a mean = 100 and 
a standard deviation of 15. A class of science students is grouped homoge-
neously by excluding students with IQ scores in either the top 5% or the bottom 
5%. Find the lowest and highest possible IQ scores of students remaining in the 
class. 

6.16 The weights of 18-24-year-old women are normally distributed with a mean 
of 132 pounds and a standard deviation of 27.4. If one randomly selected 150 
of these women age 18-24 years, how many of them would be expected to 
weigh 100 to 150 pounds? 

6.17 If blackout thresholds are normally distributed with a mean 4.7G and standard 
deviation of 0.8G, find the probability of randomly selecting a pilot with a black-
out threshold that is less than 3.5G. 

6.18 Your last statistics quiz had a mean of 30 and a standard deviation of 6. Assume 
a normal distribution. 
a. What is the median? 
b. What is the Z-score of the mean? 
c. In order to get an A, your Z-score must be +1.5 or above. What is the mini-

mum raw score necessary? 
d. A Z-score of —2.0 and below will be an F. What is that raw score? 
e. If your raw score is 27, what is your Z-score? 
f. What raw score would be at the 95th percentile? 

Your kind and understanding statistics instructor decides to give everyone in 
the class an extra point on his or her raw score. 

g. What is the new mean? 
h. If you had a Z-score of —1.00 before the extra point, what is your Z-score after 

the extra point? 
i. In order to get an A, you must still have a Z-score +1.5 from the mean. What 

is the minimum raw score necessary? 
j. If your biostatistics instructor bases his grades on the normal curve (i.e., 

curves his grades), what effect will the extra point have on your grade? 

6.19 Two hundred students took a test. The scores were normally distributed. Your 
score was in the 60th percentile. How many people scored at or below your 
score? 

6.20 Serum cholesterol levels were taken from a population of college students. The 
results were normally distributed. Males had a mean of 195 and a standard de-
viation of 10. Females had a mean of 185 and a standard deviation of 12. 
a. What were the cholesterol levels of the highest 5% of the males? 
b. What were the cholesterol levels of the highest 5% of the females? 
c. What percentage of males would have a cholesterol level of less than 180? 
d. What percentage of females would have a cholesterol level of less than 180? 
e. What percentage of males would have a cholesterol level between 180 and 

200? 
f. What percentage of females would have a cholesterol level between 180 and 

200? 
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g. Concern was expressed by the health educators on a particular college cam-
pus of 10,000 that students with serum cholesterol levels above 200 might be 
at an increased risk of heart disease. If the campus was equally divided be-
tween males and females, how many males and how many females on this 
campus would be at an increased risk? 



Sampling Distribution of Means 

Chapter Outline 

7.1 The Distribution of a Population and the Distribution of Its 
Sample Means 
Compares and contrasts a population distribution of observations 
with the distribution of sample means selected from it 

7.2 Central Limit Theorem 
Explains why an astonishing idea, the central limit theorem, plays a 
pivotal role in inferential statistics 

7.3 Standard Error of the Mean 
Discusses the standard error as a key to computations of areas of the 
sampling curve 

7.4 Student's t Distribution 
Details when and how to use the t distribution instead of the normal 
distribution to determine the relative position of in its sampling 
distribution 

7.5 Application 
Applies the principles of the central limit theorem to a specific 
example 

7.6 Assumptions Necessary to Perform t tests 
Explains what prerequisites must be met prior to calculating the 
t test 

Learning Objectives 

After studying this chapter, you should be able to 

1. Distinguish between the distribution of a population and the distribution of its sam-

ple means 

2. Explain the importance of the central limit theorem 

3. Identify the main parts of the central limit theorem 

4. Apply the principles of sampling distributions to predict the behavior of sample 

means 

5. Compute and interpret the standard error of the mean 

6. Determine when to use a t distribution 

1 
1 
1 

12 
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THE DISTRIBUTION OF A POPULATION AND THE 
DISTRIBUTION OF ITS SAMPLE MEANS 

Statisticians are interested in drawing inferences about a population. For exam-
ple, it would be prohibitively expensive to conduct a health status survey by 
giving everyone in the United States a standardized comprehensive physical 
examination. Instead, a statistician would recommend that a sample be exam-
ined to estimate the important health parameters of the population. Such esti-
mates, being random variables, would be expected to vary from sample to 
sample. In fact, if we were to select a large number of samples from apopula-
tion and tabulate the sample means, the result would be a distribution of sam-
ple means. And we might be surprised at the shape of that distribution. 

It is of fundamental importance to make a clear distinction between a distri-
bution of sample means and the population distribution of observations. A 
distribution of sample means is the set of values of sample means obtained 
from all possible samples of the same size (n) from a given population; that is, it 
is the population of all values of that statistic (sample mean in this case). 

A distribution of sample means can be readily illustrated by again using the 
data of blood glucose measurements from the Honolulu Heart Study (Table 7.1 
and Figures 7.1 and 7.2). Figure 7.1 illustrates the distribution of blood glucose 
values for the entire population of 7683 men. The population mean ,u is 161.52, 

Relative 
frequency 

.50 — 

40 — 

p = 161.52 
(7 , 58 15 

30 — 

20 — 

1 0 — 

20 	 60 	 100 	 140 	 180 	 220 	 260 	 300 	 340 	 380 

x: Blood glucose (mg/100m1) 

Figure 7.1 Distribution of Blood Glucose Values from the Honolulu Heart Study Population 
(N = 7683) 
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Table 7.1 Distribution of the Population and Distribution of 
Means from Samples for Blood Glucose Measurements of 
Men in the Honolulu Heart Study 

	

Number of 	 Sample Means 
Blood Glucose 	 Observations 	 - 25) 
(mg/100 ml) 	 (frequency) 	 (frequency) 

30.1- 45.0 	 2 
45.1- 60.0 	 15 
60.1- 75.0 	 40 
75.1- 90.0 	 210 
90.1-105.0 	 497 

105.1-120.0 	 977 
120.1-135.0 	 1073 	 5 
135.1-150.0 	 1083 	 62 
150.1-165.0 	 849 	 201 
165.1-180.0 	 691 	 109 

180.1-195.0 	 569 	 23 
195.1-210.0 	 440 
210.1-225.0 	 343 
225.1-240.0 	 291 
240.1-255.0 	 153 

255.1-270.0 	 115 
270.1-285.0 	 82 
285.1-300.0 	 60 
300.1-315.0 	 38 
315.1-330.0 	 18 

330.1-345.0 	 26 
345.1-360.0 	 19 
360.1-375.0 	 20 
375.1-390.0 	 9 
390.1-405.0 	 13 

405.1-420.0 	 11 
420.1-435.0 	 6 
435.1-450.0 	 5 
450.1-465.0 	 4 
465.1-480.0 

Total 	 7683 	 400 

and its standard deviation a-  is 58.15. These parameters are based on all 7683 
cases. Suppose you select a sample of size 25 from this population and compute 
its sample mean x and standard deviation s. If, with n = 25, you repeat this ran-
dom sampling scheme a number of times, you will generate a new distribution, 
that of the means of the samples. This particular random sampling was done 
400 times to generate the distribution of sample means, as shown in the right- 
hand column of Table 7.1. If it were possible to select all possible samples of size 
25 from the population of 7683, the result would be 8.524 x 10 71  samples, 
an overwhelmingly large number! practice, of course, we take only one 
sample.) 
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Relative 
frequency 

.50 — 

40 — 

= 160.66 
1 2 .24 = 12 x 	 • 

(standard deviation of sample means) 

20 — 

10 — 

20 	 60 	 100 	 140 	 180 	 220 	 260 	 300 	 340 	 380 

,Tc.. Mean blood glucose (mg/100m1) 

Figure 7.2 Distribution of Means of Samples of Blood Glucose (n = 25) from the Honolulu 
Heart Study 

As you can see in Figure 7.2, the distribution of sample means is symmetri-
cal, roughly bell-shaped, and centered close to the population mean of 161.52, 
but with considerably less variation than the distribution of individual glucose 
values. 

CENTRAL LIMIT THEOREM 

A quick glance at Figures 7.1 and 7.2 shows one striking similarity and an 
equally striking difference. The mean of the distribution of sample means is al-
most identical to the mean of the underlying population. On the other hand, the 
variability of sample means is far less than that of the population. This differ-
ence is quite evident from the broad, flat curve of blood glucose readings as 
compared to the narrow, peaked curve of their means. Another noteworthy 
characteristic is that the distribution of sample means is approximately bell- 
shaped and symmetrical, whereas the original population distribution was no-
ticeably skewed. This may appear to be unusual, even paradoxical. Indeed it is! 
It is one of the most remarkable features of mathematical statistics, and is called 
the central limit theorem. 

30 — 
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The central limit theorem states that for a randomly selected sample of size 
n (n should be at least 25, but the larger n is, the better the approximation) with 
a mean ,u and a standard deviation o- : 

1. The distribution of sample means x is approximately normal regardless of 
whether the population distribution is normal or not. 
From statistical theory come these two additional principles: 

2. The mean of the distribution of sample means is equal to the mean of the 
population distribution—that is, /i x  = ,u. 

3. The standard deviation of the distribution of sample means is equal to 
the standard deviation of the population divided by the square root of 
the sample size—that is, 

o- 

n 
(7.1) 

We illustrate these three principles in Figure 7.3, which shows four very dif-
ferent population distributions. For each, as the sample size n increases, the 
sampling distribution of the mean approaches normality, regardless of whether 
the original population distribution was normal. A close scrutiny also reveals 
that, for any population distribution, the mean of each sampling distribution is 
the same as the mean (a) of the population itself. Note also that as the sample 
size increases, the variability of the sampling distribution becomes progres-
sively smaller. 

2 	 STANDARD ERROR OF THE MEAN 

The measure of variation of the distribution of sample means, o- Vn, referred to 
as the standard error of the mean, is denoted as SE(x)—that is, 

cr 
SE(x) = cr r  = 	 (7.2) 

N. it 

SE(X) is a counterpart of the standard deviation in that it is a measure of varia-
tion, but variation of sample means rather than of individual observations. It is 
an important statistical tool because it is a measure of the amount of sampling 
error. Sampling error differs from other errors in that it can be reduced at will, 
provided one is willing to increase the sample size. A nearly universal applica-
tion of the standard error of the mean in medical literature is to specify an in-
terval of x ± 2SE(x), which includes the population mean, ,u, with about 95% 
probability. 

To prove the central limit theorem requires a considerable mathematical 
background beyond the level of this book. However, the sampling experiment 
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Figure 7.3 The Effect of Shape of Population Distribution and Sample Size on the Distribution 
of Means of Random Samples 
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Z = X (7.4) 
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of Figures 7.1 and 7.2 is in itself convincing evidence of the theorem's truthful-
ness. In these figures we can see the following: 

1. The mean of the distribution of sample means ,u, is identical to the popu-
lation mean ht. 

2. The standard deviation  of the  sample means computed by use of the tra-

ditional formula VI(x /IX (n — 1) is 12.24, very close to the standard 
error of the mean computed by using (7, = U ti " = 11.63. This is an im- 
pressive result; it is now possible to compute the standard error of the 
mean knowing only the sample size and the population a-  or its estimate s. 

3. The distribution of sample means is approximately normally distributed. 

In practice a-  is seldom known. We estimate it from the sample standard de-
viation s; consequently, the equation most commonly used for computing the 
standard error of the mean is 

s, = 
v n 
	 (7.3) 

Note that is estimated from a sample when a-  is unknown. 
Often we encounter data that are not normally distributed. This situation 

may present a problem in statistical analysis; but by working with sample 
means, we can meet the assumption of normality, providing the sample size is 
sufficient (about 25 or more). 

Because the central limit theorem states that sample means are approxi-
mately normally distributed, it is possible to find the area under the curve for 
the normal distribution of sample means. To find it, we must again use the Z 
transformation—that is, compute a Z score. For sample means, the equation for 
Z is 

This computed Z also establishes the relative position of x in a distribution of 
sample means. 

7.4 	 STUDENT'S t DISTRIBUTION 

All too often the population standard deviation a-  is unknown. Without o-  we are 
unable to calculate the Z score. We know, however, that when a-  is unknown, it 
may be estimated by s, the sample standard deviation. In Chapter 3, we calcu-

lated s like this: 
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2 ^(x — x)  
s = 11 

n — 1 

Can this s be used instead of the (.)-  in equation 7.4? Fortunately, yes. But we no 
longer have the standard normal distribution. Instead we have a distribution 
that was discovered in 1906 and published in 1908 by William S. Gossett, an 
English chemist and statistician employed by the Guinness Brewery in Dublin. 
Because the brewery, fearing release of trade secrets, rarely permitted publica-
tions by its employees, Gossett published under the pseudonym "Student." So 
his distribution is commonly referred to as Student's t distribution. The equa-
tion for its t score is 

x — 
t= 

s / V n 
(7.5) 

This t distribution is similar to the standard normal distribution in that it is uni-
modal, bell-shaped, and symmetrical, and extends infinitely in either direction. 
Further, although the curve has more variance than the normal distribution, its 
area still equals 1.0. Areas under the curve, designated as a in Table B (inside 
back cover), are a function of a quantity called degrees of freedom (df), where 

df = n —  1 	 (7.6) 

when estimating the standard deviation from a single sample. Degrees of free-
dom measure the quantity of information available in one's data that can be 
used in estimating the population variance o -2. Therefore, they are an indication 
of the reliability of s, in that the larger the sample size, the more reliable s will be 
as an estimate of a-. It follows that the variance of the t distribution of means 
from large samples is less than those from small samples. Note that when the 
sample size exceeds about 30, the t distribution so closely approximates the nor-
mal distribution that for practical purposes the normal distribution may be 
used. In other words, for large samples, s becomes a quite reliable estimate of a- , 
as graphically illustrated in Figure 7.4. From the figure we can see that there are 
many t distributions, one for each degree of freedom. 

The t distribution introduces the concept of infinite degrees of freedom for 
large sample sizes. In fact, the t distribution for infinite degrees of freedom is 
precisely equal to the normal distribution. This equality is readily seen by com-
paring the critical values for df = oc (infinity) of Table B for various values of a 
with those of Table A. The approximation is good, beginning with 25 df and 
nearly identical at 30 df. The percentage points of the t distribution in Table B 
are given for a limited number of areas. For example, the t value for a = .05 
with 15 df equals 1.753. It is found by locating df = 15 in the margin and 
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Figure 7.4 Comparison of t Distributions and Normal Distributions 

reading the value of t = 1.753 in the column labeled a = .05. Here a denotes the 
area in the tail under the curve. 

When should the t distribution be used? Use it when the population stan-
dard deviation is not known. If you know the population's o-, or your sample 
exceeds 25, feel confident to use the normal distribution. Otherwise, the t distri-
bution is indicated. 

To summarize, Table 7.2 presents the equations for Student's t distribution, 
along with other equations introduced in this chapter. 

Table 7.2 Characteristics of a Population Distribution and Its Distribu-
tion of Sample Means 

Distribution of 
Characteristic 	 Population Distribution 	 Sample Means 

Mean 	 ii 	 lix = g 

Measure of of variation 	 a 	 (r, = -_ 
v n 
— 

Z score 	 Z = 
x p., 	

Z = 
xA 

- 
a 	 a V n 

x — ,u, 
t statistic 	 t = 

s 

7.5 	 APPLICATION 

Using the blood glucose observations from the entire Honolulu Heart Study 
population (Figure 7.1), we find that = 161.52 and a-  = 58.15. Suppose we se- 
lect samples of size 25 from this population. (1) What proportion of sample 

I 
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means would have values of 170 or greater? (2) What proportion of sample 
means would have values of 155 or lower? 

For question 1, we reduce the problem to Z scores so we can determine the 
proportion of the area that is beyond Z. On obtaining 

	

170 — 161.52 	 8.49 
Z —   = 	 — .73 

	

58.15 / V25 	 11.63 

we turn to Table A, which shows that the area to the right of Z = .73 is 
.5 — .2673, or about 23%. 

For question 2, using the same technique, we can find the value of the rela-
tive deviate corresponding to the sample mean 155: 

	

155 — 161.25 	 — 6.25 
Z = 	 = — .54 

	

58.15/V25 	 11.63 

Table A reveals that the area below Z = —.56 is .5 — .2123 = .2877, or about 
29%. 

ASSUMPTIONS NECESSARY TO PERFORM t TESTS 

To perform a test of hypotheses the following two assumptions need to be met: 

a. That the observations are randomly selected 
b. That the distribution is a normal distribution 

Sometimes the assumptions are not met, and individuals performing the t 
test still obtain valid results because the t test has a characteristic referred to as 
being robust. In other words, it can handle the violation of the assumptions. 

Conclusion 

A distinction exists between the distribution of a population's observations and 
the distribution of its sample means. A powerful tool called the central limit theo-
rem gives reassuring results: No matter how unlike normal a population distri-
bution may be, the distribution of its sample means will be approximately nor-
mal, provided only that the sample size is reasonably large (n 30). The mean of 
the sampling distribution is equal to the mean of the population distribution. 
The standard error of sample means equals the standard deviation of the obser-
vations divided by the square root of the sample size. In sampling experiments, 
these results are often applied to determine how unusual a sample mean is. 
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Vocabulary List 

central limit theorem 	 distribution of sample 	 standard error of the 

degrees of freedom 	 means 	 mean 
population distribution 	 Student's t distribution 

Exercises 

7.1 	 Suppose samples of size 36 are drawn from the population of Exercise 6.5. De- 
scribe the distribution of the means of these samples. 

7.2 	 If samples of size 25 are selected from the population of Exercise 6.6, what per- 
centage of the sample means would you expect to be 
a. between 57 and 63? 
b. less than 58? 
c. 61 or larger? 

7.3 	 Repeat Exercise 7.2, but this time use a sample size of 64. 

7.4 	 After completing Exercises 7.2 and 7.3, explain the effect of an increasingly larger 
sample size on the probabilities you calculated in Exercises 7.2 and 7.3. 

7.5 	 Refer to the population of Exercise 6.9. 
a. What is the standard error of the mean for n = 16? 
b. What is the standard error of the mean for n = 64? 
c. What is true about the relationship between n and SE(x)? 

7.6 Suppose heights of 20-year-old men are approximately normally distributed 
with a mean of 71 in. and a population standard deviation of 5 in. A random sam-
ple of 15 20-year-old men is selected and measured. Find the probability that the 
sample mean x 
a. is at least 77 in. 
b. lies between 65 and 75 in. 
c. is not more than 63 in. 

7.7 	 If the length of normal infants is 52.5 cm and the standard deviation is 4.5 cm, 
what is the probability that the mean of a sample of (a) size 10 and (b) size 15 is 
greater than 56 cm? 

7.8 Suppose that the mean weight of infants born in a community is p = 3360 g and 
cr = 490 g. 
a. Find P(2300 < x < 4300). 
b. Find P(x Ls. 2500). 
c. Find P(x 5000). 
What must you assume about the distribution of birthweights to make the an-
swers to (a), (b), and (c) valid? 

7.9 Suppose you select a sample of 49 infants from the population described in Ex-
ercise 7.8. 
a. What are the mean and standard error of this sampling distribution? 
b. Find P(3100 < .x < 3600). 
c. Find P(X < 2500). 
d. Find P(x > 3540). 

I 
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What must you assume about the distribution of birthweights to make the an-
swers to (b), (c), and (d) valid? 

7.10 If the mean number of cigarettes smoked by pregnant women is 16 and the stan-
dard deviation is 8, find the probability that in a random sample of 100 pregnant 
women the mean number of cigarettes smoked will be greater than 24. 

7.11 a. Describe the three main points of the central limit theorem. 
b. What conditions must be met for the central limit theorem to be applicable? 
c. Explain why the central limit theorem plays such an important role in infer-

ential statistics. 

7.12 a. Describe the difference between the distribution of observations from a popu-
lation and a distribution of its sample means. 

b. What are the differences between the standard deviation and the standard 
error? 

c. When would we want to use the standard deviation and when the standard 
error? 

7.13 a. Describe the difference between the Z and the t distributions. 
b. Under what condition is the t distribution equivalent to the Z distribution? 
c. If you had the choice of using the Z distribution or the t distribution, which 

would you use? Why? 

7.14 If the cholesterol level of men in the community is normally distributed with a 
mean of 220 and a standard deviation of 50, what is the probability that a ran-
domly selected sample of 49 men will have a mean between 200 and 240? 

7.15 Compare the critical value (Z = ±1.96) that corresponds to 5% of the tail area of 
the normal distribution with the critical values of the t distribution for df = 9, 19, 
29, and 00 . As the degrees of freedom increases (which means that the sample 
size increases) what happens to the value of t compared with the value of Z? Ex-
plain why this is occurring. 

7.16 If the forced vital capacity of 11-year-old white juvenile males is normally distrib-
Uted with a mean of 2400 cc and u = 400, find the probability that a sample of 
n = 64 will provide a mean 
a. greater than 2500 
b. between 2300 and 2500 
c. less than 2350 

7.17 a. Find the standard error in Exercise 7.16. 
b. If you want the SEW to be one-half its size, how large a sample would you 

need to have? 

7.18 Suppose systolic blood pressure of 17-year-old juvenile females is approximately 
normally distributed with a mean of 128 mmHg and a standard deviation of 
12 mmHg. 
a. What proportion of girls would you expect to have blood pressures between 

122 mmHg and 134 mmHg? 
b. If you were to select a sample of 16 girls and obtain their mean systolic blood 

pressure, what proportion of such samples would you expect between 122 
mmHg and 134 mmHg? 

c. Compare the results of (a) and (b) and explain the reason for the difference. 

I 
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7.19 For data that are normally distributed, how much area is included under the nor- 

mal curve 
a. within ±- 1u? 
b. with ± 1 SE( x) for a distribution of sample means? 
Compare (a) and (b) and state why the results do or do not surprise you. 

7.20 For Table 2.2, X = 73 and o-2  = 121. If a person is chosen at random, what is the 
probability that she or he would have a diastolic blood pressure 
a. between 80 and 100? 
b. less than 70? 
c. greater than 90? 

7.21 The mean blood glucose in Table 3.1 is 152 and or = 55. Find the probability that 

a randomly selected individual would have a glucose value 
a. between 80 and 120 
b. less than 80 
c. greater than 200 

7.22 If the mean serum cholesterol in Table 3.1 is 217 and the variance is 750, deter-
mine the probability that a randomly selected person would have a cholesterol 

value 
a. between 150 and 250 
b. greater than 250 
c. less than 150 

7.23 For data that are normally distributed with a mean of 15 and s = 40, determine 
the proportion of individuals who would fall 
a. below 100 
b. between 100 and 200 
c. above 160 
d. below 160 

7.24 If you selected a sample of n = 100 from the population given in Exercise 7.23, 
find the probability of obtaining an x below 160. 

7.25 Find the SE( x ) x ) in Exercise 7.24. 

7.26 Redo Exercise 7.8 but substitute o-  = 460 g for the 490 g. 

7.27 If you are sampling an obviously nonnormal population, what other fact can you 
use to permit you to justify performing tests of hypotheses? 

7.28 If adult male cholesterol is normally distributed with mean = 200 and o = 35, 

what is the probability of selecting a male whose value is 136? 

7.29 A company that cans soup lists the number of milligrams of sodium as 950 mg 
per serving. A consumer group is concerned that the soup contains more sodium 
than is listed on the can. Do the cans contain more than the 950 mg of sodium per 
serving listed on the label? Assume a normal distribution. 
a. A sample of 25 cans has a mean sodium content of 975 mg per serving and a 

sample standard deviation of 60 mg. Write your null and research hypotheses. 
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b. How many degrees of freedom do you have? 
c. What is your critical value? (Use a level of significance of .05.) 
d. What is your calculated value? 
e. State your conclusions. Be specific. 
f. If you used a level of significance of .01 instead of .05, would your conclusion 

be any different? Explain. 

I 
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Chapter Outline 

8.1 Estimation 
Explains why estimation is a primary statistical tool 

8.2 Point Estimates and Confidence Intervals 
Discusses point estimates and confidence intervals as two ways of 
estimating population parameters where only sample statistics are 
known 

8.3 Two Independent Samples 
Describes the difference between sample means as a modification of 
the estimate of a single-sample mean 

8.4 Confidence Intervals for the Difference Between Two Means 
Shows how confidence intervals help estimate the difference be-
tween two population parameters 

8.5 Paired t Test 
Presents pros and cons of using a treatment group as its own control 

8.6 Determination of Sample Size 
Offers methods for determining in advance the sample size needed 
to design an efficient study 

Learning Objectives 

After studying this chapter, you should be able to 

1. Compute a confidence interval from a set of data for 
a. a single population mean 
b. the difference between two population means 

2. State three ways of narrowing the confidence interval 

3. Determine the sample size required to estimate a variable at a given level of 
accuracy 

4. Distinguish between a probability interval and a confidence interval 

5. List the pros and cons of performing a before-and-after experiment 

106 
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ESTIMATION 

One of the principal objectives of research is comparison: How does one group 
differ from another? Specifically, we may encounter such questions as: What is 
the mean serum cholesterol level of a group of middle-aged men? How does it 
differ from that of women? From that of men of other ages? How does today's 
level differ from that of a decade ago? What is the mean number of children per 
family in the United States? What is the difference in the mean number of cavi-
ties between children who drink fluoridated water and those who drink non- 
fluoridated water? What is the difference in oxygen uptake between joggers 
and nonjoggers? 

These are typical questions that can be handled by the primary tools of clas-
sical statistical inference—estimation and hypothesis testing. The unknown char-
acteristic (parameter) of a population is usually estimated from a statistic com-
puted from data of a sample. Ordinarily, we are interested in estimating the 
mean and the standard deviation of some characteristic of the population. The 
purpose of statistical inference is to reach conclusions from our data and to sup-
port our conclusions with probability statements. With such information, we 
will be able to decide if an observed effect is real or due to chance. Estimation 
is the main focus of this chapter. In the next chapter, we move to hypothesis 
testing. 

In both estimation and hypothesis testing we may deal either with the char-
acteristic of a population or with the differences in two population characteris-
tics. Although the latter is more typical, the former is also quite commonly used. 
Either approach can be followed in one of two ways: (1) by estimating the dif-
ference in means between an experimental group and a control group or (2) by 
estimating the difference in means between one group before treatment and the 
same group after treatment. 

In the first case, we deal with two random samples from two different popu-
lations; in the second, with two samples obtained from the same group before 
and after treatment. Also, in the first case, the observations are independent; in 
the second, the observations are not independent because they were obtained 
from the same source although at two different times. Because the estimation 
procedures are different for the two cases, they are treated separately. 

POINT ESTIMATES AND CONFIDENCE INTERVALS 

There are two ways of estimating a population parameter: a point estimate and a 
confidence internal estimate. 

A point estimate of the population mean ict is the sample mean x computed 
from a random sample of the population. A frequently used point estimate for 
the population standard deviation u is s, the sample standard deviation. For ex-
ample, in attempting to assess the physical condition of joggers, an investigator 
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used the maximal volume oxygen (V0 2) uptake method. He found that the 
point estimate of V02  for joggers was x = 47.5 ml/kg. Because x is a statistic, the 
point estimate varies from sample to sample. In fact, if the investigator had re-
peated the experiment a number of times, he would have found a range of x's, 
any one of which would be a point estimate of the same population parameter. 
So a weakness in the point estimate idea is that it fails to make a probability 
statement as to how close the estimate is to the population parameter. This flaw 
is remedied by use of a confidence interval (CI), the interval of numbers in 
which we have a specified degree of assurance that the value of the parameter 
was captured. A confidence interval allows us to estimate the unknown param-
eter IL and give a margin of error indicating how good our estimate is. Using 
nothing more complicated than the Z score, it is possible to derive the equation 
for an interval that has a known probability of including the population mean 
kt.. By using this method, you can be confident, say, that 95% of all sample means 
based on a given sample size will fall within ± 1.96 standard errors of the pop-
ulation mean. This outcome can be stated algebraically in terms of Z scores: 

P — 1.96 
X 	 1.96 = .95 
o/Vn 

(8.1) 	 1 

A few simple manipulations lead from equation 8.1 to equation 8.2, an impor-
tant expression. First, multiply by cr 

P — 1.96
o- 

n
5_ x — 	 1.96 __ =.95 
 v n 

Next, change signs: 

( 
0- 	 o- 

P 1.96 — _. — x + p., _-... —1.96 _ = .95 
Nil 	 \,/ 111 

Finally, add 

P x+ 1.96 _ 	 x — 1.96 	 =.95 

	

n 	 vn 

For convenience, reverse the inequality signs. The result is 

— 1.96 _gip. x + 1.96 	 = .95 
n 	 ri 

(8.2) 

Using equation 8.2 on repeated sampling, you can expect (with a probability of 
.95) the true population mean kt to be captured by the interval x — 1.96(0 -  v-n) 
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to x + 1.96(o-  v). The interval is referred to as the 95% confidence interval of the 
population mean and is usually denoted as 

95% CI of iLL = ± 1.96 
‘n (8.3) 

This procedure can be used for other probabilities. For example, the 99% confi-
dence interval forµ is given by 

99% CI of ,u ± 2.576 
cr 

(8.4) 

These confidence interval equations are not used very often because they suf-
fer from a drawback: a-  is usually unknown. But we have already established 
that when a-  is unknown, we can estimate it by s, the sample standard deviation. 
Let us say we use the (1 — a) 100% confidence interval for a population mean it , 
which is an interval constructed from sample data such that, upon repeated 
sampling, it will have a probability 1 — a of containing the population mean. 
As before, to construct the interval, we use a t value (with n — 1 df) instead of 
the Z value. By using a procedure parallel to the one employed for equations 8.3 
and 8.4, we can obtain the confidence interval when only s (not a-) is known: 

(1 — a)100`)/0 CI for µ = (8.5) 

where t(s/ Vii) is the margin of error for the CI and is a measure of sampling 
error. 

n EXAMPLE 1 

If we wished to estimate the mean VO 2  uptake for a population of joggers from 
a sample of 25, we could use the 95% confidence interval for it. We already 
know that x = 47.5 ml/kg and s = 4.8 for a sample of 25. In Table B we find that 
the t value for 24 df for the central 95% of the t distribution is 2.064. The 95% 
confidence interval is thus 

95°/0 CI of ,u = X ± 2.064 
VT/ 

= 47.5 ± 2.064 
4.8 

V25 

= 47.5 ± 1.98 

= (45.5, 49.5) 
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The result: Upon many repetitions of this experiment, we would expect 95% of 
such intervals, x – 2.064s/V a to x + 2.064s /v a, to capture the population 
mean ,u. The values 45.5 and 49.5 are the lower and upper 95% confidence 

limits. The interval, 45.5 to 49.5 ml/ kg, is the 95% confidence interval. It is 
important to note that the confidence interval varies but not the population 

mean ,u. n 

The confidence interval provides a range that captures the true value of the 
population mean with 95% probability. However, there is still a 5% chance that 
the interval does not capture ,u—there is a 2.5% chance thatµ actually lies above 
Z = 1.96 (or below Z = –1.96). Therefore we use Z 975 = 1.96 and Z 025 = –1.96 

in calculating the upper and lower confidence limits. 
It is important to note an interesting distinction: these intervals are referred 

to as confidence intervals, not probability intervals. Before we actually obtain spe-
cific confidence limits based on a sample, the equation is properly referred to as 
a probability statement. But once the specific confidence limits are calculated, 

the a posteriori probability (i.e., the probability derived from observed facts) 
that the interval contains the mean ,u or it does not. Therefore, with typical 
caution, statisticians refer to it as a 95% confidence interval because there is 
95% confidence that in the long run the intervals constructed in such a way will 
indeed contain the population mean. 

It would be incorrect to say in Example 1 that the probability is 95% that the 
trueµ falls between 45.5 and 49.5 ml/ kg. It either falls or does not fall between 
these two values. Once the interval is fixed, there is no randomness associated 
with it nor is there any probability. 

The 95% confidence interval is used quite commonly, as is the 99% confi- 
dence interval. Other percentages may be used but are less frequently encoun-
tered in practice. 

8.3 	 TWO INDEPENDENT SAMPLES 

Suppose we wish to extend our example of comparing the physical condition of 
joggers and nonjoggers, again using the VO 2  uptake criterion. To obtain two in-

dependent samples, we first compute VO 2  uptake means for the two groups: 

joggers (x i ) and nonjoggers (x 2). The next logical step is to compute x i  – x2, the 
difference in mean VO, uptake for the two samples. As you might expect, 

x i  – x2  is an estimate of µ l  – /12, the difference between means of the two un-
derlying populations. Just as we computed confidence intervals for the mean, 
so we also compute them for the difference between two means. 

From the central limit theorem, mathematical statisticians are able to demon-

strate that x i  – x2  is normally distributed with a mean of pt i  – /12  and a variance 

equal to o- + o-22 , n 2 . Its square root is the standard error of the difference 

between two means and is often denoted as 
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SE(x-  – 
11 2  

(8.6) 

This equation should not be too surprising because x i  and x-2  are each normally 
distributed with respective variances of 0- 12 /  n i  and 0-22 /n2. But the variance of the 
difference is the sum of the two individual variances. This is certainly reasonable 
if we realize that the variation of x i  – x2  cannot help but be more than that 
which would be expected for either x i  or x2  separately. 

Finally, the equation for the calculation of the Z score is 

x2) /12)  Z= 
Vcri2/ni + (1.22/n2 

(8.7) 

In many cases, we compare a given phenomenon in a treated and an untreated 
population. Because the cases and controls are being drawn from the same pop-
ulation, it is reasonable to assume that 01 = 0- 22, thereby simplifying equa-
tion 8.7 to 

z  = (xi  -  x2) - 	 - /12) 
o-V1/n i  + 1/n2  

As before, 0-2  is seldom known. So again we estimate it by a sample variance ob-
tained from the data. This procedure again moves us from the normal to the 
t distribution. In such a case, we actually obtain two different estimates of u 2— 
namely, s21  and 4 If it is safe to assume that these two are an estimate of a com-
mon variance, 0-2, we can pool the two sample variances and obtain the pooled 
standard deviations, sp , a single improved estimate of 0- 2  (improved because it 
is based on a larger sample). We get the pooled sample variance by taking a 
weighted average of s21  and 4 

S 2 = 
y(n, — 1) + s 2 (n2  — 1) 

n i  + n2  — 2 
	 (8.9) 

Equation 8.9 takes the sum of squares of the two separate samples and divides 
them by the sum of the degrees of freedom. This procedure for computing s t2, 
provides an unbiased estimate of 6r 2 . 

After computing sp2 , we can obtain s p  simply by extracting the square root. We 
need s1  to compute the t score: 

t =
(xi  — x2)  — (µ — /1 2 ) 

spV1,/n 1  + 1/n 2 

 with n1  + n2  — 2 df. 

(8.10) 

(8.8) 
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8.4 	 CONFIDENCE INTERVALS FOR THE DIFFERENCE 
BETWEEN TWO MEANS 

After estimating the difference between two population means, we take the 
next logical step and establish a confidence interval around the difference. The 
point estimate of the difference was given by x, — x 2; the confidence interval 
equation may be derived from the probability statement: 

—1.96 , (xi 	 ) 	 i-c2)  1.96 

	

2 	 ,2 

	

V n i 	 n 2  

This derivation, parallel to that of equation 8.2, yields the following equation 
for the 95% confidence interval: 

95% CI for µ 1  — 
/ 	 2 0_2\ 

= xi  — x2 ± 1.96 NI 	 + 2  
V rl, 	 // 2 / 

(8.12) 

The general equation for the confidence interval with an unknown if is 

	

11 	 1 
(1 — a)100% CI for 	 — /1 2  = x i  — x2 ± t s„

ni 	 n2/ 
+ - 	 (8.13) 

which uses a t score, where t is the value corresponding to the 1 — a proportion 

of the central area with n i  + n, — 2 df. 
These formulas (equations 8.5 and 8.13) will not give us correct results if the 

data were collected as a random sample. Because outliers will affect the value of 
x, the true level of confidence will likely be affected. Consequently, outliers 
should be removed before calculating a confidence interval. 

n EXAMPLE 2 

In estimating physical condition by means of maximal VO, uptake, it is found 
that for a random sample of 25 joggers, x i  = 47.5 ml/kg with s 1  = 4.8 and that 

for 26 nonjoggers, x 2  = 37.5 ml/kg with S 2  = 5.1. From these results, it is possi-
ble to compute a confidence interval. This computation will help us estimate the 
magnitude of the true difference, A l  — ,u,2 . The 99% confidence interval is calcu-
lated by first using Table B to obtain the t value. In Table B use a p of .99 from the 
two-sided row. The actual df in this example is 49. The nearest df in Table B is 
50, which yields a t of 2.678. 

To proceed with the computation of the confidence interval, we will need the 
value of sp , which we obtain using equation 8.9. 

P = .95 (8.11)   
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s;(n – 1) + si(n, 	 1) 

n i  + n2 1  2-  

/4.82(24) + 5.1 2(25) = 
‘it 	 25 + 26 – 2 

/1203.21 
49  = \,/n.65 = 4.96 

It follows that 

99% CI for 	 – 	 t .005 

, 	 1 

	

= 47.5 – 37.5 ± 2.678(4.96) -\/ 	  + 1 
25 26 

= 10.0 -± 3.721 

= (6.28, 13.72) 

Hence, we have 99% confidence that the difference of the population mean 
for VO2  uptake for joggers versus nonjoggers falls between 6.28 ml/kg and 
13.72 ml/kg. So i- – kt2, which is estimated to be 10.0 ml/kg, is quite likely to 
be within this confidence interval. Because both of the confidence limits are pos-
itive, the interval does not include the value zero. This means that whatever the 
true difference is, joggers almost surely have a higher VO 2  uptake than nonjog-
gers. This will be consistent with the results of the t test. n 

If more samples were obtained from the same populations as those in our ex-
ample, we would find different means, different standard deviations, and con-
sequently different confidence intervals. On average, we would expect that 99% 
of them would capture the true difference (u l  – /22 ) and 1% would not. 

Figure 8.1 shows 50 confidence intervals for the differences in mean systolic 
blood pressure between smokers and nonsmokers, as given in Table 3.1. Here 
we know the true value of µ 1 – pt2 : 131.89 – 129.05 = 2.84. So in this case we 
can determine how many of these confidence intervals actually include the 
known value of gi  – µ2  = 2.84. We find that only the 24th one does not. One 
out of 50 is 2%—a bit higher than expected. However, in a longer series we 
would expect the result to be closer to 1%. 

Narrow confidence intervals are of the greatest value in making estimates, 
because they allow us to estimate an unknown parameter with little room for 
error. This attribute moves us to consider all possible ways of narrowing confi-
dence intervals. As seen from the confidence interval for the single population 

sl' = 
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11 1  -,u 2  = 131.89--129.05 

= 2.84 

1 
L 

	 I 

	1 

‘E' 

1 

Figure 8.1 99% Confidence Intervals for Differences in Systolic Blood Pressure il l  - 
for 50 Samples of Size 25 from Each Group of Nonsmokers and Smokers 
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mean, x ± Z(o I v/11), the quantities that affect the width of the interval are the 
sample size, the Z value, and the standard deviation. 
• A confidence interval can be narrowed by 

1. Increasing the sample size 

2. Reducing the confidence level (for example, instead of using Z = 2.58 for 
99% confidence, use Z = 1.96 for 95% confidence) 

3. Increasing precision by reducing measurement (and other nonrandom) 
errors, thus producing a smaller variance 

In Table 9.1 we present the confidence interval formula for the population 
mean ,u and the difference of two populations µ l  – ,u2. For the sake of conve-
nience, we also include the confidence interval for 7r, the population proportion, 
and the confidence interval for 7Ti  - 77-2, the difference of the population pro-
portions we will discuss in Chapter 11. 

5 	 PAIRED t TEST 

In many investigations, the treatment group is used as its own control. This 
technique often generates quite appropriate comparisons because variability 
due to extraneous factors is reduced. It is not unusual for extraneous factors to 
account for many of the differences between means obtained from two inde-
pendent samples. Given extraneous factors that add to variability, use of the 
treatment group as its own control will reduce the variability and give a smaller 
standard error, hence a narrower confidence interval. But we pay a price. First, 
independence is sacrificed in that we have two samples on the same items mea-
sured. Second, we are left with about half the degrees of freedom we would ob-
tain using two independent samples. With fewer degrees of freedom, the t value 
is larger, and consequently the confidence interval is wider. So we must take 
these pros and cons into consideration when planning an experiment. Only 
then can we tell which procedure—two independent samples or a paired t 
test—will be more advantageous. 

Data from paired t tests must never be thought of as coming from two inde-
pendent samples. We can, however, handle the data statistically as a one- 
sample problem, then proceed with the confidence interval determination as for 
a single population mean. The procedure is to reduce the data to a one-sample 
problem by computing paired t tests for each subject. By doing this with paired 
observations, we get a list of differences that can be handled as a single-sample 
problem. 
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n EXAMPLE 3 

To determine whether a person's physical condition improves after taking up 
jogging, an investigator obtains maximal V02  uptake values before subjects 
start jogging and again six months later. Table 8.1 lists the values for V0 2  uptake 
for 25 randomly selected joggers. The difference between the before (x) and after 
(x') values is given as d = x' - x. The mean of the difference, d, is 12.42, and the 
standard deviation is sd  = 1.57. These values represent sample estimates of pop-
ulation parameters 8 and o-6, respectively, where 8 (delta) signifies the mean dif-
ference of population observations. We now can test whether jogging has been 
effective in improving physical condition as measured by the change in V0 2  up-
take over time. Using the procedure for obtaining a single-sample confidence 
interval, we find that (with df = n - 1 = 24, where n = number of pairs), 

Table 8.1 Maximal Volume Oxygen Uptake Values of 25 Persons Age 30-40 Before and 
After They Became Joggers 

Case 
Before 

x 
After 

x' d = x' - x 

1 34.1 47.9 13.8 190.44 
2 32.3 44.6 12.3 151.29 
3 36.5 47.3 10.8 116.64 
4 38.6 50.6 12.0 144.00 
5 39.6 51.9 12.3 151.29 
6 31.8 43.3 11.5 132.25 
7 31.0 43.3 12.3 151.29 
8 38.8 51.9 13.1 171.61 
9 29.3 41.2 11.9 141.61 

10 35.3 47.6 12.3 151.29 
11 41.3 54.0 12.7 161.29 
12 43.3 55.6 12.3 151.29 
13 33.8 45.6 11.8 139.24 
14 28.3 39.4 11.1 123.21 
15 36.8 48.9 12.1 146.41 
16 30.6 42.4 11.8 139.24 
17 28.8 46.3 17.5 306.25 
18 40.0 52.8 12.8 163.84 
19 39.8 48.9 9.1 82.81 
20 44.8 56.7 11.9 141.61 
21 30.8 46.5 15.7 246.49 
22 25.8 38.7 12.9 166.41 
23 32.7 44.2 11.5 132.25 
24 35.3 47.2 11.9 141.61 
25 37.9 51.0 13.1 171.61 

'Yx 877.3 max' = 1187.8 Id = 310.5 Id2  = 3915.27 
x 35.1 x' = 47.5 d = 12.42 

://d2  - (1: d)2  n_ /3915.27 	 (310.5) 2  25 
n - 1 	 \I 	 24 	

= 1.57 

n = # of pairs 
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99% CI for 5 = d ± t .005  
n 

1.57 
= 12.42 	 2.797 ,_ 

\ 25 

= 12.42 -± .88 

= (11.54, 13.30) 

The sample estimate of 5, d = 12.42, indicates a gain in VO 2  uptake after jog-
ging. The 99% confidence interval suggests that this gain is not likely to be less 
than 11.54 ml/kg or greater than 13.30 mg/kg. Note again that zero (i.e., the 
possibility that the before mean equals the after mean) is not included in the in-
terval. The conclusion: six months of jogging improves one's physical fitness as 
measured by VO2  uptake. n 

Paired t tests are one of several classes of experiments used with noninde-
pendent samples. Other types include twin studies, studies of siblings of the 
same sex, litter mates in animal studies, and pairs of individuals who are 
matched on several characteristics such as age, race, sex, and condition of 
health. Because of the pairing, the test is known as a paired t test. 

B 	 DETERMINATION OF SAMPLE SIZE 

The daily life of a modern statistician involves a lot more than manipulating 
data and running computer programs. The statistician serves as a resource— 
sometimes to scientists, sometimes to administrators, almost always to persons 
less sophisticated in statistics. The statistician has to be prepared to answer 
many questions, and one of the most commonly heard is: "How large a sample 
size do I need to obtain a statistically meaningful result?" 

Now that is a tough question. It is analogous, in a sense, to "How many runs 
must we score to win the ball game?" In the ball park, you could not field that 
one without more information, so you would have to ask a few questions your-
self: "What's the score? What inning? Who's at bat? How many outs?" Simi-
larly, in approaching the sample-size question, you first need to ask: "How 
much error can I live with in estimating the population mean? What level of 
confidence is needed in the estimate? How much variability exists in the obser-
vations?" Once you have the answers to these questions, you can attack the 
sample-size question. 

Arithmetically, the sample size can be obtained by solving for n in the now- 
familiar equation 

,u z = (8.14) 
o- /V—n 
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which could be rewritten as 

Z= 
d 

where d = x — 1.1, and is a measure of how close we need to come to the popula-
tion mean ix. Put another way, the estimate should be within d units of the pop-
ulation mean. Solving for n, we obtain 

n = 
(Zo- )2 
	

(8.15) 

n EXAMPLE 4 

You need to estimate the mean serum cholesterol level of a population within 
10 mg/dl of the true mean. You learn that a- = 20, and you want to state with 
95% confidence that X is within 10 units of A. So you obtain n as follows: 

[(1.96)(20)] 2  
n = 	 15.36 

102  

Because fractional sample sizes are not available, you conservatively round up 
to the next integer and get busy obtaining a sample of 16. If a- is unknown, you 
estimate it by s and use the t distribution. n 

Knowing how to determine sample size in advance of an experiment is wise 
planning, because your financial resources might limit you to, say, only 
10 guinea pigs. If 16 are needed to gain significant results, it would be unwise to 
proceed. Alternatively, you could conserve resources by advance knowledge of 
the number of animals needed. If 16 guinea pigs would suffice, it would not be 
cost-effective to do the experiment with 30 animals. 

Equation 8.15 is the simplest way of estimating sample size. In the next chap-
ter, we look at other, somewhat more complicated approaches. Taken together, 
all these approaches underscore an important counsel to researchers: Consult a 
statistician to determine your sample size. 

Conclusion 

A point estimate is something of a "best guess" at a population parameter. A 
confidence interval gives us a range of values to which we can append a proba-
bility statement as to whether the population parameter is included. Differences 
between population means may be estimated in two ways: by use of two inde-
pendent samples or by a single sample measured before and after the experi-
ment. But first consider the pros and cons. 
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You should be prepared to answer the statistician's toughest and most com-
monly heard question: "How large a sample . . . ?" The answer is both easy and 
difficult—easy, in employing a simple equation; difficult, in getting the right 
input to that equation. 

Vocabulary List 

a posteriori probability 
confidence interval 
confidence limits 
paired t test 

point estimate 
pooled sample variance 
pooled standard 

deviation 

standard error of the 
difference 

two independent 
samples    

Exercises 

8.1 	 Mice of a given strain were assigned randomly to two experimental groups. Each 
mouse was injected with a measured amount of tumor pulp. The pulp came from 
a large, suitable tumor excised from another mouse. After the tumor injections, 
the two groups received different chemotherapy treatments. Forty days after in-
jection, the tumor volumes (in cubic centimeters) were measured as a compari-
son of the treatments. The data are as follows: 

Chemotherapy Treatment A 	 Chemotherapy Treatment B 

1 1 27 30 
x .51 cc .64 cc 
s2 .010 .045 

st, --- .17 

Estimate Al  — t.t2; calculate its 95% confidence interval. 

8.2 Are the 95% confidence intervals narrower or wider than the 99% confidence in-
tervals? Do Exercises 8.3 and 8.4; the results will either confirm your answer or 
cause you to change it. 

8.3 The standard hemoglobin reading for healthy adult men is 15 g/100 ml with a 
standard deviation a-  = 2 g. For a group of 25 men in a certain occupation, we 
find a mean hemoglobin of 16.0 g. 

a. Obtain a 95% confidence interval for au and give its interpretation. 
b. Calculate the 95% confidence interval for the following sample sizes: 36, 49, 

and 64. 
c. As the sample size increases, do the confidence intervals shrink or widen? 

Explain. (Hint: Recall what you learned about the central limit theorem in 
Chapter 7. 

8.4 Repeat Exercise 8.3 using a 99% confidence interval, instead of a 95% confidence 
interval. 

8.5 The standard serum cholesterol for adult males is 200 mg/100 ml with a stan-
dard deviation of 16.67. For a sample of 49 overweight men the mean reading is 
225. 
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a. Construct a 95% confidence interval for pc. 

b. What size sample would you need to have 95% confidence that the estimate 
ofµ is within 10 mg/100 ml? 

8.6 	 The standard urine creatinine for healthy adult males is .25 to .40 g/6 hr. 
a. If we assume the range encompasses 6 standard deviations, what is the esti-

mate of the mean and the standard deviation of the population? 
b. Construct the 99% confidence interval for pc. 

8.7 The mean diastolic blood pressure of 100 individuals in Table 2.2 is 73 mmHg 
with a standard deviation s = 11.6 mmHg. Construct a 99% confidence interval 
for A. 

8.8 The mean weight of the sample of 100 men from the Honolulu Heart Study is 
64 kg with the standard deviation s = 8.61. Obtain a point estimate and a 95% 
confidence interval for A. 

8.9 Compute 99% confidence intervals for kt i  - 112  between males and females if, for 
38 males, x 1  = 74.9 and s21  = 144, and, for 45 females, x2  = 71.8 and s 22  = 121. 

8.10 Cholesterol measurements from 54 vegetarians and 51 nonvegetarians yield the 
following data: 
Vegetarians: 	 115, 125, 125, 130, 130, 130, 130, 135, 135, 140, 

140, 140, 140, 145, 145, 150, 150, 150, 155, 160, 
160, 160, 160, 160, 165, 165, 165, 165, 165, 165, 
165, 170, 170, 170, 170, 170, 170, 170, 175, 175, 
175, 180, 180, 180, 180, 180, 185, 185, 185, 200, 
215, 215, 225, 230 

Nonvegetarians: 105, 110, 115, 125, 125, 130, 135, 145, 145, 150, 
150, 160, 165, 165, 165, 170, 170, 170, 170, 170, 
175, 175, 175, 180, 180, 180, 180, 185, 185, 190, 
190, 190, 190, 195, 200, 200, 200, 200, 200, 205, 
210, 210, 210, 210, 215, 220, 230, 230, 240, 240, 
245 

Find an estimate of A i  - /12  and calculate the 99% confidence interval for the dif-
ference between the population parameters. 

8.11 a. Why is a confidence interval not called a probability interval? 
b. What is the interpretation of a confidence interval? 
c. What factors regulate the length of a confidence interval? 

8.12 A hospital administrator wishes to estimate the mean number of days that in-
fants spend in ICUs. 
a. How many records should she examine to have 99% confidence that the esti-

mate is not more than 0.5 day from the mean? Previous work suggests that 
1.6. 

b. How many records should she examine if she wants to lower the confidence 
interval to 95%? 

8.13 Find the 95% confidence interval for the difference in the mean systolic blood 
pressure of smokers and nonsmokers using the first 50 individuals of the Hon-
olulu Heart Study population given in Table 3.1. 
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8.14 Obtain the 95% confidence interval for 8, the difference in cholesterol determina-
tions obtained by two different labs on the same 10 patients as given in Exer-
cise 9.15. 

8.15 The weight gain for a control diet of n 1  = 10 individuals is x i  = 12.78 and for a 
treatment diet of n 2  = 9 individuals, x2  = 15.27. The corresponding variances are 
sl = 13.9 and sZ = 12.8. Compute the 90% confidence interval for Ai — 2' 

8.16 The mean serum cholesterol level of 25 men ages 65-74 is 236, with s i  = 50. For 
25 women of the same age, the mean is 262, with s, = 49. 
a. What is the 95% confidence interval for the difference in mean serum choles-

terol level between men and women? 
b. What is the 99% confidence interval? 

8.17 The mean hemoglobin of n, = 16 white women is x i_ = 13.7, with s 2.1  = 2.3, and 
for n2  = 20 black women, x2  = 12.5, with s2 = 2.1. 
a. What is the 95% confidence interval for ,u w  — Pb' the difference between white 

and black women's hemoglobin? 
b. What is the 99% confidence interval for ikw  - 

8.18 Repeat Exercise 8.15 using a 95% confidence interval. 

8.19 Rework Exercise 8.16 after replacing s i  with 60 and s, with 64. 

8.20 Complete the following: 
a. Perform a test of the cholesterol measures shown in Exercise 8.10 at the 

a = .01 level. 
b. Compare the result in (a) with the result of the 99% confidence interval and 

explain why there are or are not differences between the two. 

8.21 Also obtain the 99% confidence interval for 8 mentioned in Exercise 8.1. 

8.22 Rework Exercise 8.15 after making the following changes: n i  = 25, x i  = 15, 
n 2  = 16, x2  = 16.9, and s2.1  = 12, and s 22  = 10. Compute the 95% confidence inter-
val (u i  — ,u2). 

8.23 Using the data of Table 3.1, determine if there is a significant difference in the 
ponderol index between smokers and nonsmokers at the a = .05 level. 
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Chapter Outline 

9.1 Definitions 
Before launching into a formal discussion of the technique, explains 
important concepts involved in a test of significance and presents an 
analogy 

9.2 Basis for a Test of Significance 
Illustrates the rationale for a test of significance by use of a specific 
example 

9.3 Procedure for a Test of Significance 
Gives a formal description of the steps that constitute a test of signif-
icance, and uses an example from the Honolulu Heart Study to illus-
trate the procedure 

9.4 One-Tailed Versus Two-Tailed Tests 
Explains how to decide whether a test of significance is to be unidi-
rectional or bidirectional 

9.5 Meaning of "Statistically Significant" 
Emphasizes the fact that "significance" in a statistical sense differs 
from the ordinary meaning of the word and is related to the testing 
procedures 

9.6 Type I and Type II Errors 
Discusses the two types of errors one is liable to make in the perfor-
mance of a test of significance 

9.7 Test of Significance of Two Independent Sample Means 
Uses an example of the difference in oxygen uptake of joggers and 
nonjoggers to illustrate the most common method of comparing 
sample means—the t test 

9.8 Relationship of Tests of Significance to Confidence Intervals 
Demonstrates how confidence intervals can be used to perform tests 
of significance 

9.9 Summary Table of Inference Formulas 

9.10 Sensitivity and Specificity 

Gives formulas to calculate the percent of false positives and false 
negatives of a screening procedure 
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Learning Objectives 

After studying this chapter, you should be able to 

1. Outline and explain the procedure for a test of significance 

2. Explain the meaning of a null hypothesis and its alternative 

3. Define statistical significance 

4. Find the value of Z or t corresponding to a specified significance level, a 

5. Distinguish between a one-tailed and a two-tailed test 

6. Distinguish between the critical value and the test statistic 

7. Determine when to use a Z test and when to use a t test 

8. Distinguish between the meaning of practical and technical significance 

9. Determine whether the difference between two means is statistically significant for 
both independent and dependent sample means 

10. Explain the meaning and relationship of the two types of errors made in testing 
hypotheses 

11. Be able to list the reasons it is inappropriate to perform the test 

— x2 — °) 
t — 	  

s r V1, n i  + 1 n2  

on dependent sample means 

12. Explain the meaning of a P value 

13. Explain the relationship between a confidence interval and a test of significance 
and how the confidence interval can be used in testing a given hypothesis 

1.1 	 DEFINITIONS 

Before getting into the step-by-step procedure of a test of significance, you will 
find it helpful to look over the following definitions. 

Hypothesis. A statement of belief used in the evaluation of population 
values. 

Null hypothesis, Ho . A claim that there is no difference between the popula-
tion mean ,u and the hypothesized value ,u 0 . 

Alternative hypothesis, Hi . A claim that disagrees with the null hypothesis. 
If the null hypothesis is rejected, we are left with no choice but to fail to re-
ject the alternative hypothesis that ,u is not equal to it o . 

Test statistic. A statistic used to determine the relative position of the mean 
in the hypothesized probability distribution of sample means. 
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Critical region. The region on the far end of the distribution. If only one end 
of the distribution is involved, the region is referred to as a one- tailed test; if 
both ends are involved, the region is known as a two - tailed test. When the 
computed Z falls in the critical region, we reject the null hypothesis. The 
critical region is sometimes called the rejection region. The probability that 
a test statistic falls in the critical region is denoted by a. 

Significance level. The level that corresponds to the area in the critical re-
gion. By choice, this area is usually small; the implication is that results 
falling in it do so infrequently. Consequently, such events are deemed un-
usual or statistically significant. When a test statistic falls in this area, the 
result is referred to as significant at the a level. 

P value. The area in the tail or tails of a distribution beyond the value of the 
test statistic. The probability that the value of the calculated test statistic, or 
a more extreme one, occurred by chance alone is denoted by P. 

Nonrejection region. The region of the sampling distribution not included 
in a; that is, it is located under the middle portion of the curve. Whenever 
a test statistic falls in this region, the evidence does not permit us to reject 
the null hypothesis. The implication is that results falling in this region are 
not unexpected. The nonrejection region is denoted by (1 — a). Some in-
correctly refer to it as the "acceptance region." However, to call it such is 
misleading because it has only a probability of occurring in it. 

Test of significance. A procedure used to establish the validity of a claim by 
determining whether or not the test statistic falls in the critical region. If it 
does, the results are referred to as significant. This test is sometimes called 
the hypothesis test. 

To reinforce some of these definitions, let us consider an analogy. In a crim-
inal court, the jury's duty is to evaluate the evidence of the prosecution and 
the defense to determine whether a defendent is guilty or innocent. By use of the 
judge's instructions, which provide guidelines for their reaching a decision, the 
members of the jury can arrive at one of two verdicts: guilty or not guilty. Their 
decision may be correct or they could make one of two possible errors: convict 
an innocent person or exonerate a guilty one. 

A court trial and a test of significance have a lot in common. By a statistical 
test of significance, one attempts to determine whether a certain claim is valid. 
The claim is usually stated as a null hypothesis, H0, which holds that the mean 
of a certain population is some value, p,0  (the defendent is innocent). Using the 
data obtained in the sample (the evidence), one computes a test statistic (the 
jury) and uses it to determine whether it supports the null hypothesis claim (in-
nocence) that the sample comes from a population with a mean of The basis 
for finding out whether the test statistic supports the null hypothesis is the crit-
ical region (judge's instructions). The critical region sets guidelines for rejecting 
or failing to reject the null hypothesis. If the computed statistic falls in the criti- 
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cal region of the distribution curve, where it is unlikely to occur by chance, the 
claim is not supported (conviction). If the test statistic falls in the nonrejection 
region, where it is quite likely to occur by chance, the claim is not rejected (pos-
sible exoneration). A look ahead to Figure 9.6 might clarify the discussion. 

.2 	 BASIS FOR A TEST OF SIGNIFICANCE 

The purpose of a test of significance is to determine what evidence the data pro-
vide to reject a specific null hypothesis; that is, we determine whether or not the 
data provide evidence against the supposition made by the null hypothesis, 
which supposes that there is not an effect, in favor of the alternative hypothe-
sis, which supposes that there is an effect. 

To illustrate the basic concepts of a test of significance, let us again consider 
the Honolulu Heart Study. Suppose someone claims that the mean age of the 
population of 7683 individuals is 53.00 years. How can you verify (or reject) this 
claim? Start by drawing a sample of, say, 100 persons. Suppose the sample 
mean equals 54.85. Now the question is: What is the likelihood of finding a sam-
ple mean of 54.85 in a sample of 100 from a distribution whose true mean, ,u, is 
53? You can determine the answer by examining the relative position of X (54.85) 
on the scale of possible sample means. In Figure 9.1 you can see that 54.85 falls 
considerably above the hypothesized population mean of 53. 

If the probability of such an occurrence is small as judged by the areas (in 
either direction) in the tails beyond this point, the occurrence is considered 
unusual or statistically significant. Why consider the areas in both directions? 
Remember that x could have fallen either above or below the mean ,u,. If x fell 
close to the center of the distribution, the probability of its occurring by chance 
would be fairly high. Events that have a high probability of occurrence are com-
mon and consequently not significant. The likelihood (probability) of the chance 
occurrence of a sample mean falling as far from the population mean can be ob-
tained by performing a test of significance. 

x 51.15 
	

p = 53 
	

54.85 

Figure 9.1 Distribution of Sample Means 
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9.3 	 PROCEDURE FOR A TEST OF SIGNIFICANCE 

To perform a test of significance, we take the following steps: 

1. State Ho:µ = ,a0  versus H i : 
2. Choose a significance level a = a o  (usually a u  =- .05 or .01). 
3. Compute the test statistic (the Z score): 

— 

Z =
x 

 
i /V 

4. Determine the critical region, which is the region of the Z distribution with 
a/2 in each tail, as shown in Figure 9.2. 

5. Reject the null hypothesis if the test statistic Z falls in the critical region. 
Do not reject the null hypothesis if it falls in the nonrejection region. 

6. State appropriate conclusions. 

Critical 	 Critical 
region a /2 	 1  « 	 a /2 region 

-Z 

Figure 9.2 Critical Region of a Test Statistic 

n EXAMPLE 1 

Using the Honolulu Heart Study sample of n = 100, which has a mean age 
x = 54.85, we can perform a test of significance to determine the likelihood that 
such a sample mean comes from a population whose mean is 53, given that 
o-  = 5.50. Using the procedure just outlined, we obtain the following: 

1. Ho: ,u = 53 versus Hi :µ # 53. 
2. Significance level a = .05. 
3. Test statistic: 

x - ik 	 54.85 —  53 	 1.85 
3.36 

o-  ' 	 5.5/V100 	 .55 
Z = 
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4. Critical region: From the Z distribution (Table A), we find, for a two-tailed 
test where a/2 = .025, the corresponding Z = ±1.96 (Figure 9.3). 

5. Because the computed test statistic Z = 3.36 (step 3) falls within the criti-
cal region (beyond the critical values ±1.96), we are compelled to reject 
the null hypothesis that the sample comes from a population with a mean 
of 53 and not reject the alternative hypothesis that the sample comes from 
a population with a mean not equal to 53. 

a/2 = .025 	 a/2 = .025 

Critical 	 Critical 
region 	 region 

-1.96 
E 1 = 53 

0 +1.96 

Figure 9.3 Critical Region for Example 1 

This result is considered to be "significant at the a = .05 level" because the 
probability of its occurring by chance is less than .05. The actual probability of 
obtaining a Z of 3.36 or larger is much smaller. 

Because the computed test statistic falls 3.36 standard errors from the mean, 
we could say that the probability of having a sample mean of 54.85 or larger in 
either direction (that is, above or below p, = 53) is less than .002. This figure is 
usually denoted by P and is obtained by summing the area beyond Z = ±3.36, 
which is at most 2(.5 – .4990) = 2(.001) = .002. (Observe that because 3.36 does 
not appear in Table A, we use the area .4990 corresponding to 3.09, the largest 
value in the table.) 

The P value of .002 indicates that the probability of selecting by chance a 
mean that falls as far as or farther than 3.36 standard errors above or below the 
population mean of 53 is quite small—that is, less than .002. You could ask your-
self, "How could I be so lucky or unlucky as to have obtained such a result?" 
Your logical conclusion: The sample probably came from another population 
with a mean other than 53. n 

From Example 1, we can see that the test is based on how well x, the estimate 
of µ, estimates the parameter pc. If the Ho  is true, we would expect the x – µ to 
be small. If the Hi  is true, we would expect the x – µ to be large. By comparing 
the difference x – µ relative to the SE(x)—that is, computing the test statistic— 
we can estimate the probability that this test statistic provides evidence against 
the supposition made by the Ho . By examining where the test statistic falls on 
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the sampling distribution of computed Z's or t's, we can obtain the probability 
that this outcome supports the Ho  or the H i . This probability is measured by the 
P value. The smaller the P, the stronger the evidence that the Ho  is false, and the 
larger the P, the stronger the evidence that H 1  is false. Specifically, we decide 
that a result is statistically significant if the P value is smaller than the value of 
a chosen to define the critical region. 

9.4 	 ONE-TAILED VERSUS TWO-TAILED TESTS 

In testing statistical hypotheses, you must always ask a vital question: "Am I in-
terested in the deviation of x from ,u in one or both directions?" The answer is 
usually implicit in the way Ho  and H1  are stated. If you are interested in deter-
mining whether the mean age is significantly different from a given ,u, you 
would perform a two-tailed test, because the deviation, X — ,u,, could be either 
negative or positive. 

(a) H 	 = p o  vs. H1 : tr # po  

(112 = .025 	 a/2 = .025 

Z -1 96 	 +1 96 

(b) Ho . p do  vs. H 1 : p > p0 

1.645 

(c) Ho : p > p0  vs. H 
	

< p 0  

Z -1 645 

Figure 9.4 Two -Tailed Versus One -Tailed Test (a = .05) 
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If you are interested in whether the mean age is significantly larger than the 
given A, you would perform a one-tailed test. Likewise, you would go to the 
one-tailed test for mean ages smaller than p,. 

Figure 9.4 illustrates the use of each kind of test. Figure 9.4a indicates that a 
two-tailed test is called for in testing the null hypothesis that A = Ao  against the 
alternative hypothesis that p, . One half of the rejection region a is placed in 
each tail of the distribution; that is, we would reject Ho  if the value of the calcu-
lated test statistic fell in either of the outlying regions. Figure 9.4b indicates a 
one-tailed test for testing the null hypothesis that ,u, < kto  against the alternative 
hypothesis that ,u, > ,u,o. Here, the critical region falls entirely in the positive 
tail; we would reject Ho  if the test statistic were so large as to fall in the critical 
region. Figure 9.4c indicates a left-handed one-tailed test for testing the null hy-
pothesis that A > ,u0. Here, the critical region falls entirely in the negative tail; 
we would reject Ho  if the calculated statistic were negative and fell in the criti-
cal region. 

A one-tailed test is indicated for questions like these: Is a new drug superior 
to a standard drug? Does the air pollution level exceed safe limits? Has the 
death rate been reduced for those who quit smoking? A two-tailed test is indi-
cated for questions like these: Is there a difference between the cholesterol lev-
els of men and women? Does the mean age of a group of volunteers differ from 
that of the general population? 

n EXAMPLE 2 

A smog alert is issued when the amount of a particular pollutant in the air is 
found to be greater than 7 ppm. Samples collected from 16 stations give an X of 
7.84 with an s of 2.01. Do these findings indicate that the smog alert criterion has 
been exceeded, or can the results be explained by chance? Because (7" is esti-
mated by s, we rely on the t test. 

1. H0: p. 7.0 and H1 : > 7.0. 
2. a = .05. 
3. Test statistic: 

x — A 
= 

7.84 — 7.0 .84 
t =  

s!Vn 	 2.01/\/16 	 .50 

4. Critical region: Because the H 1 : A > 7.0 indicates a one-tailed test, we place 
all of a = .05 on the positive side. From Table 7.2 we find that, for 15 df, 
t 05  = 1.753 (Figure 9.5). 

5. Because the calculated t = 1.68 does not fall in the critical region, we do 
not reject Ho ; alternatively, we conclude the data were insufficient to indi-
cate that the critical air pollution level of 7 ppm was exceeded. n 
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= .05 

0 
	

1.753 

Figure 9.5 Critical Region for Example 2 

9.5 	 MEANING OF "STATISTICALLY SIGNIFICANT" 

Research reports often state that the results were statistically significant, 
(P < .05), or make some similar statement. Such a comment means that the ob-
served difference is too large to be explained by chance alone. The significance 
level, somewhat arbitrarily selected at such values of a as .05, .025, .01, or .001, 
is a measure of how significant a result is. The significance level a is also the 
magnitude of error that one is willing to take in making the decision to reject 
the null hypothesis. Some investigators prefer to report their results in terms of 
the P value alone and let the reader conclude whether the information is suffi-
cient to conclude that factors other than chance are operating. 

In Section 9.3, a P value was calculated for the test ofµ = 53. Because it was 
a two-tailed test, we doubled the area in the tails beyond Z = ±3.36—namely, 
P < .002. For a one-tailed test, the P value would be the area beyond Z = 3.36— 
that is, P < .001. Researchers and statisticians generally agree on the following 
conventions for interpreting P values: 

P value 

P > .05 
P < .05 
P < .01 

Interpretation 

Result is not significant; usually indicated by no star. 
Result is significant; usually indicated by one star. 
Result is highly significant; usually indicated by two stars. 

Some investigators would consider P < .10 to be marginally significant. "Sta-
tistically significant" means that the evidence obtained from the sample is not 
compatible with the null hypothesis; consequently, we reject Ho . However, just 
because a result is "not statistically significant" does not prove that H o  is true. 
We may not be able to reject Ho  simply because the sample was too small to pro-
vide enough evidence to do so. In that sense, the decision to reject a null 
hypothesis is stronger than the decision not to reject it. Nor does "statistically 

1 
1 
1 

1 
1 
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significant" imply clinically significant; that is, the difference, although techni-
cally "significant," may be so small that it has little biological or practical 
consequence. 

.6 	 TYPE I AND TYPE II ERRORS 

In our analogy between hypothesis testing and a criminal trial, we noted that 
the jury could make one of two errors: (1) reject the claim of innocence when the 
defendent is indeed innocent or (2) fail to reject the claim of innocence when the 
defendent is indeed guilty. Likewise, in testing a null hypothesis (H0), you have 
two possible decisions: 

1. Ho  is false and consequently rejected; that is, the evidence is that the sam-
ple comes from another population than one having µ = pc o . 

2. Ho  is true and consequently we fail to reject it. The observed difference 
between p, and µo  is relatively small and may be reasonably ascribed to 
chance variation. 

If your decision is that Ho  is false when indeed it is, you have reached a cor-
rect decision. If you decide that Ho  is false when it is actually true, an event 
likely to occur a proportion of the time, you have committed a type I error (also 
referred to as an a error)—rejecting a true hypothesis that in the court analogy 
corresponds to convicting an innocent person. If your decision is that Ho  is true 
when indeed it is, you have also reached a correct decision. If you decide that Ho  
is true when it is actually false, an event likely to occur /3 proportion of the time, 
you have committed a type II error (also referred to as a J3 error)—accepting a 
false hypothesis that in the court analogy corresponds to freeing a guilty per-
son. These two errors are summarized in Figure 9.6. 

TRUE STATE OF NATURE 

H0  is true H0  is false 

(H1  is true) 

D Accept Ho  Correct Type II P (Accept Ho lHo  true) = 1 - a 
E decision error P (Reject Ho lHo  false) = 1 -/3 

(1 - a) (P) 

Reject Ho  Type I Correct 

0 (assume H1  error decision 

N is true) (a) ( 1  - P) 

Total 

Figure 9.6 Possible Errors in Hypothesis Testing 
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In the test of a null hypothesis, some specific value for the parameter, say j.L„, 
is proposed. If this value happens to be correct but we reject it based on the ob-
served sample, we have committed a type I error. If the proposed value hap-
pens to be incorrect but we accept it based on the observed sample, we have 
committed a type II error. Therefore, we can say that the type I error is the prob-
ability of rejecting a true null hypothesis and that the type II error is the proba-
bility of failing to reject a false null hypothesis. 

Let us apply this test to the Honolulu Heart Study. The mean age for the pop-
ulation was µ = 54.36. If we did not know this, but guessed that ,u was 53, the 
upper critical point for the distribution under the null hypothesis of 53 would 
be 53.90, because 

x — 53 
1.645 = 

5.5 V100 

reduces to x = 53.90. Figure 9.7 illustrates that if we had randomly arrived at an 
x below 53.90, we would have failed to reject the false Ho  (that ,u = 53) 0 pro- 

portion of the time. This /3 error is represented by the area to the left of x 
= 53.90. This area, based on an x of 53.90 and an s of 5.5, using a sample of 100, 

is equal to the area corresponding to 

53.90 — 54.36 	 —.46 
Z = 	 = —84 

5.5 V100 	 .55 

Using Table A, we find that /3 = .20. 
In Figure 9.7 we see that we would have rejected the false H o  about 80% of the 

time (1 — = .80). The quantity 1 — is referred to as the power of a test, 
which is the probability of rejecting Ho  when Ho  is indeed false. Generally, sta-
tisticians try to design statistical tests that have high power; that is, /3 is small, 
say, .2 or .1. We can infer from Figure 9.7 that this goal could be accomplished 

Figure 9.7 Distribution of Sample Means for p = 53 and IL = 54.36 
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either by decreasing the significance level (a) from .01 to .05 or by increasing the 
sample size. 

From the foregoing discussion, it should be clear that the a level represents 
the probability of a type I error, and /3, the probability of a type II error. A sort of 
reciprocal relationship exists between the two types of error. Figure 9.7 suggests 
that the smaller you choose a to be, the larger will be. The reason for this is 
that as the critical region moves farther to the right, more /3 area is generated to 
the left of the critical point. The only way to reduce both a and ( errors is to re-
duce the overlap—that is, the area common to the two distributions. This can be 
done by increasing the sample size, which will reduce s ), = 0/1/ and thus nar-
row the sampling distributions. 

.7 	 TEST OF SIGNIFICANCE OF TWO INDEPENDENT 
SAMPLE MEANS 

We learned in Chapter 8 of the frequent need to compare sample means. As we 
seldom know the value of o-, we estimate it by sp  (see equation 8.9) and compute 
the test statistic, which we defined as 

t  = 	 x2 	 kt2) 

	

s pVl 	 + 1 / n2 
(9.1) 

with n 1  + n 2  – 2 df. Using this test statistic, we compare x i  – x2, the difference 
between the sample means (an estimate of the difference between population 
means), with µ l – su,2, the unknown difference between the population means. 
Because under the null hypothesis the difference between the two means 

– ,u2  equals zero, in equation 9.1 the expression kt i  – /12  vanishes. 
This situation was illustrated in Example 2 of Chapter 8. Recall that a random 

sample (n 1 ) of 25 from a population of joggers provided an estimate of mean 
maximal V02  uptake (i i ) of 47.5 ml/kg with s 1  = 4.8, and for a sample of 
11 7  = 26 from a population of nonjoggers a mean maximal V02  uptake of 
x2  = 37.5 ml/kg with an s 2  of 5.1. Is this difference statistically significant or can 
it be explained by chance? Using the test statistic, we can proceed as follows: 

1. Ho: ,u 1  = /i2; H1 : Ill  ,u2 . 
Another way of writing A i  = ,u2  is A i  – kt2  = 0, giving Ho: µ l – /12  = 0 
and Hi : 	 – /12 0. 

2. Significance level a = .01. 
3. To proceed with the test statistic, we compute s p  by using equation 8.9: 
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1(4.8) 2 (24) + (5.1)2 (25) 	 /1203.21 

\I 	 25 + 26 — 2 	 49 

= 24.56 = 4.96 

4. The test statistic is computed by using equation 9.1, which is modified 
only to the extent of dropping A i  — ,u2 : 

— X2  - 0 
t 

S p 1 / n 1 + 1/n2 

47.5 — 37.5 — 0 _  (9.2)   
4.96V1 /25 + 1 /26 

10.00 
= 7.2 

1.39 

5. The critical region for a t with n 1  + n2  — 2 = 49 df is shown in Figure 9.8. 
This is a two-tailed test, so the t value is found in the column labeled 
a = .01/2 = .005, that is, 2.68 in Table B in the inside back cover. 

6. The computed t of 7.2 falls well into the critical region, so we reject the null 
hypothesis and conclude that joggers have significantly better physical 
condition than nonjoggers, as judged by their VO 2  uptake. 

-2 58 +2 58 

Figure 9.8 Critical Region for a Test Statistic 

Those with little experience in statistics are often tempted to use equation 9.2 
to test the difference between the two means obtained in a paired t test, as al-
luded to in Section 8.5. This is a faulty approach because the assumption behind 
equation 9.2 presupposes two independent samples, whereas the paired t test 
yields two sample means that are dependent. A desirable way to handle the lat-
ter case is to reduce it to a single population statistic (as illustrated by Table 8.1) 
and apply the following test statistic: 
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d — 0 
t =,- 

s v d 
(9.3) 

with ti — 1 df. The value d is the mean difference between x (before) and x' 
(after) for each of the cases; sa  is the estimate of the standard deviation of the dif-
ferences; and zero is used for the difference between the mean before the experi-
ment and the mean after the experiment. Equation 9.3 is also referred to as a 
paired t test. 

• .8 	 RELATIONSHIP OF TESTS OF SIGNIFICANCE 
TO CONFIDENCE INTERVALS 

Confidence intervals are determined from Z or t statistics, so you might suspect 
that the decision reached by use of a significance test would be the same as that 
reached by use of a confidence interval. And it is indeed the same whenever the 
hypothesis test is two-tailed. When the significance test was performed on the 
difference of mean VO2  uptake between joggers and nonjoggers, it was found 
that the difference was highly significant. The 99% confidence interval for the 
difference ,u — ,a 2  was 6.42 to 13.58, which did not include the hypothesized 
mean of zero. Consequently, because zero was not in this interval, we reached 
the conclusion that the difference was not likely to have occurred by chance 
alone at the 1`)/0 significance level. Both confidence limits being positive, we con-
clude with 99% confidence that the difference was probably between 6.42 and 
13.58, thereby excluding zero as a likely possibility. 

Generally, there are two rules to follow in using confidence intervals to de-
termine whether a difference is significant: 

1. If a hypothesized difference in means such as Ai  — µ2 = 0 is included in 
the confidence interval, Ho  is not rejected. 

2. If the hypothesized difference is not included, Ho  is rejected. 

So far we have considered tests of significance in which we compare either 
sample means with population means or the differences between sample means 
for two groups. It is also possible to compare simultaneously the differences 
among three or more sample means. The technique for doing this is described 
in Chapter 10. 

SUMMARY TABLE OF INFERENCE FORMULAS 

Table 9.1 is a convenient summary of the confidence intervals and test statistics 
used in testing hypotheses of specific parameters. The confidence intervals are 
discussed in Chapter 8 forµ and Ai  — ,u2  and for 7F and 77-1  — 7F?  in Chapter 11. 
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Table 9.1 Summary Table of Confidence Intervals and Test Statistics for Various Parameters 

Parameter 	 Confidence Interval 	 Hypothesis 	 Test Statistic 

(1 — a) 100% CI for 

cr 
= x Z 

V 0 

or 

1-1 0: x 	 147u  

t =
x 

s / V n 

df 	 — 1 

77*  

s 
x -±- t 	 if u unknown 

v n 

(1 — a) 100% CI for 77" 

p(1 	 p) 
=p -±Z\i 	 n  

Ho: 77" = 77-0 Z= 	 P 7ro  

/ 71-0( 1  — 7,0) 

S 
d — 0 

(1 — a) 100% CI for 5 	 H0 : S = 0 	 t = N/ 

sd  

= d t Vn 	 df = Y1 

P10 : µ 1 — (1 — a)100`)/0 CI for (P, 1 — /12) 

1 	 1 
= X 1  — x2 ± Z 

11 1 	 // 2  

or 

1 
= x 1  — x, ± ts r  v + 

ni 	 nz  

= 0 X I X2  — 0 z =  

	

11 	 1 

nz 

or 

t = 
x, 	 x, 	 0 

	

1 	 1 
n  + 

"2 

df = n + n 2  — 2 

x 1 + X2  
P' = 

n + n, 

*Discussed in Chapter 11. 

_ 

	

	 1) 
n, + n 2 — 2 
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Note that the first parameters deal with one population whereas the last two 
parameters deal with two populations. Furthermore, note that the standard er-
rors of 77-1  — 77-2  are calculated a little differently for the confidence interval for-
mula than for the test statistic; this will be discussed further in Chapter 11. 

,10 	 SENSITIVITY AND SPECIFICITY 

A patient's diagnosis often depends on the outcome of a measurement of a clin-
ical test. Frequently, the measurement has a wide range for both the clinically 
normal and the diseased states. And because there is no definite dividing line 
between the normal and the diseased conditions, it is possible that a patient 
classified as abnormal could indeed be normal, and a patient classified as nor-
mal could indeed be abnormal. 

To classify an individual as having or not having a certain condition, we need 
to compare the value of a clinical test to some given cutoff point that divides in-
dividuals into normal or abnormal individuals. A clinical value follow-up in the 
abnormal range suggests that the person has the disease; a value falling in the 
normal range suggests that the person does not have the disease. Here, as with 
the rejection of the Ho, it is possible to make two errors: 

1. Classifying a person as diseased when one is not (also referred to as a false 
positive) 

2. Classifying a person as not diseased when one has the disease (also re-
ferred to as a false negative) 

We can better understand these terms by looking at the following symbolic rep-
resentation of the results of classification: 

"True" Patient Condition 

Disease 
Result Present 
of 
Test 	 Disease 

Absent 

Diseased 	 Not Diseased 

a +b 

c+d 

a+b+c+d 

a b 

d 

a+ c 	 b+d 

The false negatives are represented by c, and the false positives are represented 
by b. 
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In comparing the effectiveness of different clinical tests or screening tests, we 
are interested in knowing what their sensitivities and specificities are. Sensitivity 
is the probability that the clinical test declares those persons positive who have 
the disease. In terms of the table, 

a 
Sensitivity = 

a + c 

Specificity is the probability that the clinical test declares those persons nega-
tive who are without the disease—that is, 

Specificity = b  d  

We can see from the table that a relationship exists between these two probabil-
ities and the false negatives and the false positives; that is, the probability of 
being a false negative is 1 minus the sensitivity and the probability of a false 
positive is 1 minus the specificity. 

n EXAMPLE 3 

A screening program for diabetics used a cutoff point for blood glucose level of 
125 mg/100 ml. Those with values above this level were considered diabetics 
and those below were not. Using the results shown in Table 9.2 for 100 individ-
uals, find the sensitivity and the specificity of this screening test. 

Sensitivity = 
 a + c 	
5 

100 x 6 = 83.3% (16.7% false negative) 

Specificity = 
81 

100 X 
b 

d 
 + d 	 94 

86.2% (13.8% false positive) 

These results indicate that using a blood glucose cutoff point of 125 mg/100 ml 
is a procedure with an 83.3% sensitivity and 86.2% specificity; that is, this pro- 
cedure will declare an average 16.7% individuals not to be diabetics when they 

Table 9.2 Outcome of Diabetic Screening Program   

Diabetic 

1 

6 

Nondiabetic        

Above 125 mg/100 ml 

Below 125 mg/100 ml  

13 

81 

18 

82 

100    94        
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are diabetics, and will declare 13.8`)/0 of individuals to be diabetics when they 
are not. Since sensitivity and specificity are both binomial proportions, we can 
compute for them the standard errors and confidence intervals, as given in 
Table 9.1. n 

Conclusion 

Tests of significance are performed to determine the validity of claims regarding 
the parameters (e.g., p. or Al  – -) of a population. From the nature of each 
claim, we can decide whether the test should be one-tailed or two-tailed. The 
decision determines how the null and alternative hypotheses are stated and the 
manner in which the test is performed. Together with the choice of significance 
level, the decision defines the critical region. The critical region is the decision- 
making feature of the test, and the computed test statistic is compared to it. If 
the value of the test statistic falls in the critical region, we reject the null 
hypothesis and fail to reject the alternative; if it falls outside the critical region, 
we fail to reject the null hypothesis and cannot "accept" the alternative. In the 
former case the evidence supports the claim; in the latter it is insufficient to sup-
port the claim. This is equivalent to saying that the result is statistically signifi-
cant if the P value is small—that is, if the P value is smaller than the value of a. 
It is possible to commit one of two errors in executing these tests. In rejecting a 
true null hypothesis we make a type I error (a error), whereas in accepting a 
false null hypothesis we make a type II error (/3 error). If we do not wish to de-
fine a critical region, it is possible to compute a P value, which indicates the 
probability of the chance occurrence of this or a larger value of the test statistic 
when the null hypothesis is true. 

Vocabulary List 

alternative hypothesis 
critical region (rejection 

region) 
false negative 
false positive 
nonrejection region 
null hypothesis 

one-tailed test 
power of a test 
P value 
sensitivity 
significance leve 
specificity 
statistical significance 

test of significance 
(hypothesis test) 

test statistic 
two-tailed test 
type I error (a error) 
type II error (/3 error) 

Exercises 

9.1 	 What is the critical value for a test of significance in each of the following situa- 
tions? 
a. One-tailed test, a = .05, a known, n = 20 
b. One-tailed test, a = .05, a unknown, n = 10 
c. Two-tailed test, a = .01, a unknown, n = 14 
d. Two-tailed test, a = .01, a known, /7 = 25 
e. Two-tailed test, a = .05, a unknown, n = 35 
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9.2 	 In which of the situations in Exercise 9.1 would you use (a) a Z test? (b) a t test? 
Why? 

	

9.3 	 For each of the following, state the null (Ho) and alternative (H,) hypotheses: 
a. Has the average community level of suspended particulates for the month of 	 • 

August exceeded 30 units per cubic meter? 	 I. 

b. Does mean age of onset of a certain acute disease for schoolchildren differ 
from 11.5?  

c. A psychologist claims that the average IQ of a sample of 60 children is signif- 
I t icantly above the normal IQ of 100. 

d. Is the average cross-sectional area of the lumen of coronary arteries for men 
ages 40-59, less than 31.5% of the total arterial cross section? 

I 1 e. Is the mean hemoglobin level of a group of high-altitude workers different 
from 16 g/ cc? 

f. Does the average speed of 50 cars as checked by radar on a particular high- 
way differ from 55 mph? 	 I 

	

9.4 	 Determine the critical value that would be used to test a hypothesis under the 
conditions given in each of the following: 

known * 220, a = .05, n = 20, = 220, H1 : 
b. Ho :p, 15, HH 1 :µ > 15, a = .01, n = 35, a-  known 

 a. H0 :,u 	 H1 :µ 	 a-   

c. Ho :ia, = 70, HI :A 	 70, a = .01, n = 18, a-  known  
d. Ho://, = 120, H1 :11, 	 120, a = .05, n = 25, a-  unknown 	

I i. 

e. H0:,u 100, Hi :,u, < 100, a = .01, n = 16, a-  unknown 
f. Ho:,u, ^ 55, Hi :A < 55, a = .05, n = 49, a-  unknown 	

I I 

	

9.5 	 For each of the following situations, choose an a appropriate to the seriousness 
of the potential error involved should the null hypothesis be rejected when it is 

actually true. 
a. You wish to decide if a new treatment for pancreatic cancer, known to be a 

usually fatal disease, is superior to the standard treatment.  
b. The claim is made that the mean income for families of size four is greater 

than $20,000. 	 1 
 

	

9.6 	 For each of the parts of Exercise 9.4, decide if you should reject H o  or fail to reject 
Ho  according to the corresponding test statistic: 
a. Z = —1.79 

 

b. Z = 2.01 

d 
c. Z = 3.63

. t = 2.77 
e. t = —2.14 
f. t = —1.82 

9.7 Boys of a certain age have a mean weight of 85 lb. A complaint is made that in a 
municipal children's home the boys are underfed. As one bit of evidence, all 
25 boys of the given age are weighed and found to have a mean weight of 
80.94 lb. 
a. If it is known in advance that the population standard deviation for weights 

of boys this age is 11.6 lb, what would you conclude regarding the complaint? 
Use a = .05. 
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b. Suppose the population standard deviation is unknown. If the sample stan-
dard deviation is found to be 12.3 lb, what conclusion regarding the complaint 
might you draw? Use a = .05. 

	

9.8 	 In Table 3.1, the mean systolic blood pressure is 130 mmHg and the variance is 
448. Is this an indication that the group is significantly different from the stan-
dard if the population standard is known to be 120 mmHg? Test at a = .05. 

	

9.9 	 a. Calculate the P value for each case in Exercises 8.3, 8.4, 8.5, 9.7, 9.8, and 9.17. 
b. For each test, what do the P values tell you about statistical significance? 
c. Do your answers to (b) agree with the decisions and conclusions you made in 

each exercise? Why? Why not? 

9.10 a. State the value of the type I error for each case in Exercises 8.3, 8.4, 8.5, 9.7, 9.8, 
and 9.17. 

b. What does the type I error tell you? 
c. What does the type II error tell you? 
d. From the information stated in the problems, are you able to state the type II 

errors? 
e. If in any given problem you should decide to decrease the type I error (say 

from .05 to .01), what would happen to the type II error? 
f. What is usually done to avoid type II errors? 
g. What could you do to reduce both types of error simultaneously? 

9.11 In Table 2.2, the means and standard deviations of some subgroups of the sample 
are as follows: 

Mean 
Standard 
Deviation 

Vegetarians 72.9 11.7 40 
Nonvegetarians 73.5 11.4 43 

Males 74.9 12.0 38 
Females 71.8 11.0 45 

Is there a significant difference in the mean diastolic blood pressures, at a = .05, 
between 
a. vegetarians and nonvegetarians? 
b. males and females? 

9.12 Birth lengths of male and female infants in a small clinic gave the following re-
sults: 

x 
Group Sample Size (cm) (cm) 

Males 12 52.2 8.6 
Females 9 50.7 9.5 
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Assuming normally distributed populations with equal variances, do these data 
justify the conclusion, at a = .05, that the mean birth length is greater for males 
than for females? Also calculate the P value for the computed t. 

9.13 For Exercise 8.2, determine whether the mean hemoglobin level of the group of 
25 men is significantly different from /./. = 15 at the a = .05 level. 

9.14 Ten experimental animals were subjected to conditions simulating disease. The 
number of heartbeats per minute, before and after the experiment, were recorded 
as follows: 

t. 

Heartbeats per Minute Heartbeats per Minute 

Animal Before After Animal Before After L 

P 
1 70 115 45 6 120 115 
2 84 128 44 7 110 110 0 

3 88 146 58 8 67 140 73 
4 110 171 61 9 79 131 
5 105 158 53 10 86 157 71 

Do these data provide sufficient evidence to indicate that the 
dition increases the number of heartbeats per minute? Let a = 
the P value for the computed t. 

9.15 Blood samples from 10 persons were sent to each of two labs 
terminations. 

Serum 
Cholesterol 

(mg/ml) 

Subject Lab 1 Lab 2 

1 296 318 
2 268 287 
3 244 260 
4 272 279 
5 240 245 
6 244 249 
7 282 294 
8 254 271 
9 244 262 

10 262 285 
N' x  2,606 2,750 
LA-2  682,316 760,706 

s, 18.83 22.25 

experimental con-
.05. Also calculate 

for cholesterol de- 

I I 

Is there a statistically significant difference (at the a = .01 level) in the cholesterol 
levels reported by lab 1 and lab 2? 
a. Should one use the pooled t test or the paired t test to answer this question? 
b. Perform the test you chose for (a) and answer the question. 

I 
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c. Perform the test you did not choose for (a) and compare the result with 
(b). What do you observe? 

d. Determine the P values for both (b) and (c) and compare them. Discuss the 
relationship of the P values to what you have already concluded about the 
two t tests. 

9.16 If in Exercise 8.4 you found for the group of 25 men a mean of .35 g/6 hr, would 
you conclude that this group was significantly different from the standard group 
at the a = .01 level? 

9.17 The mean diastolic blood pressure in Table 2.2 is 73 mmHg with a standard de-
viation of 11.6 mmHg. For an a of .01, test whether the mean blood pressure of 
this group is significantly greater than 70. 

9.18 The mean weight of the sample of 100 persons from the Honolulu Heart Study 
was 64 kg. If the ideal weight is known to be 60 kg, is the group significantly 
overweight? Assume if = 10 kg and a = .05. 

9.19 a. For the data in Exercise 8.8, indicate at an a of .05 whether the mean choles-
terol level of the vegetarian group is significantly lower than that of the 
nonvegetarians. 

b. Compute a P value for the test statistic. 

9.20 Describe the difference between the H o  and H1 . 

9.21 a. What assumptions regarding the difference of two means are made in per-
forming the t test? 

b. What is the basis for pooling the sample variances when testing the difference 
between two population means? 

9.22 a. What is the basis for being able to use confidence intervals to perform a test of 
a hypothesis? 

b. What are the rules governing its use? 

9.23 a. Determine whether there is a significant difference between the mean systolic 
blood pressures of smokers and nonsmokers at the a = .05 level using the 
data from Exercise 8.12. 

h. Is the decision reached by use of the confidence interval the same as that 
reached in (a)? Explain why or why not? 

9.24 Determine whether there is a significant difference at the a = .01 level in the 
mean weight gains of the two diets described in Exercise 8.14. 

9.25 a. Using the data of Exercise 8.15, determine whether there is a significant 
difference in the mean serum cholesterol levels of men and women at the 
a = .05 level. 

b. Did you reach the same decision in part (a) that you would have reached if 
you had used the 95% confidence interval for (A i  — ,u,2 )? 

9.26 a. Using the data of Exercise 8.16, determine whether there is a significant 
difference in the mean hemoglobin levels of white and black women at the 
a = .05 level. 

b. Did you reach the same decision you would have reached if you had used the 
95% confidence interval for (i.t i  — ,u,,)? 
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9.27 A study was conducted using 139 undergraduates at a large private university 
who volunteered to participate in this research as partial fulfillment of a course 
requirement. One of the items studied was the maximum daily amount of alco-
hol consumed in the last month. Based on the data in the following table, are 
there differences between males and females in the maximum amount of alcohol 
consumed in any one day in the past month? 

Maximum Daily Quantity 
of Alcohol Consumed 

in the Last Month 

Men 	 Women 

Mean = 8.2 	 Mean = 5.6 
s = 5.9 	 s = 5.7 
n = 54 	 n = 85 

NOTE: These data were extrapolated 
and based on Carey and Correia (1997). 

a. Write your null and research hypothesis using the correct statistical notation. 
b. What is your critical value at a .05 level of significance? 
c. Are these groups independent or dependent? Explain. 
d. What is your calculated t value? 
e. State your conclusions. Be specific. 
f. Calculate the 95% confidence intervals. 
g. Refer to Chapter 2,"Populations and Samples." What concerns would you 

have about generalizing these results to all college students? Identify as many 
concerns as you can. 



I 0 Analysis of Variance 

Chapter Outline 

10.1 Function of ANOVA 
Discusses the general usefulness of ANOVA (analysis of variation) 
for comparing means of several groups 

10.2 Rationale for ANOVA 
Explains how ANOVA utilizes a comparison of variations between 
and within groups by means of an F ratio 

10.3 ANOVA Calculations 
Shows the equations for the various sources of variation 

10.4 Assumptions 
Describes the assumptions necessary for performing the tests of hy- 
potheses—independence, normality, and homogeneity of variance 

10.5 Application 
Uses the testing of the hypothesis of equality of mean birthweights 
among the infants of three groups of mothers classified by smoking 
status to test the one-way ANOVA classification 

10.6 Tukey's HSD Test 
Illustrates Tukey's HSD test, a procedure for performing multiple 
comparison tests 

10.7 Randomized Block Design 
Describes a randomized block design in which blocks are divided 
into experimental units 

Learning Objectives 

After studying this chapter, you should be able to 

1. Indicate the circumstances that call for an ANOVA rather than a t test 

2. Set up an ANOVA table that partitions the total sum of squares into between-group 
and within-group sums of squares 

3. Compute the F ratio and its appropriate degrees of freedom 

4. List the two assumptions that need to be made to perform an ANOVA 

5. Indicate the type of hypothesis that can be tested with an ANOVA 

145 
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6. Find the critical region for an F-ratio test 

7. Indicate the reason for performing multiple range tests 

8. Describe how to apply Tukey's multiple comparison procedure 

9. Describe an example of a randomized block design 

10.1 	 FUNCTION OF ANOVA 

Analysis of variance (ANOVA) is a powerful method of analyzing differences 
among a number of groups. It deals with the comparison of means from several 
groups. In Chapter 9 we discussed the technique for testing the significance of 
the difference between means for two groups. But how do you determine, for 
instance, whether there are significant differences in birthweight among three 
groups of infants—the first group born to nonsmoking mothers, the second to 
light-smoking mothers, and the third to heavy-smoking mothers? 

It is possible to perform t tests between the means of each pair of groups and 
determine which pairs differ significantly within the pairs. But this approach 
presents a number of difficulties—the choice of a proper significance level for 
"overtesting," the numerous tests needed if many groups are involved, and the 
lack of one overall measure of significance for the differences among the means. 

ANOVA is able to handle these problems elegantly. Because the results ob-
tained with ANOVA for two groups is identical to the results obtained with a t 
test, it is fair to say that ANOVA is an extension of the t test to handle more than 
two independent groups. 

For the birthweight example, the null hypothesis being tested is 

Ho: 	 = 14 2 = 11 3 

the alternative hypothesis, H 1 , being that Ho  is not true; that is, either one of the 
means is not equal to the others or none of them are equal to one another. The 
three smoking-status groups would be commonly referred to as the treatment 
groups, with smoking exposure considered as the "treatment." The theoretical 
basis for performing this test is the partitioning of the available variance of all 
observations into two sources of variation—variation between * the group means 
and variation within each of the groups. The sampling distribution used 
for testing these means is not the t distribution but rather the F distribu- 
tion (named in honor of the celebrated R. A. Fisher, who developed the 
F statistic). 

*When comparing more than two groups that are not reciprocally related, the term "among" is 
grammatically preferable to "between." In the present context, the somewhat ungrammatical but 
traditional use of "between" is due to the work of some pioneer statisticians. 

is 
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).2 	 RATIONALE FOR ANOVA 

Analysis of variance is unique in that it compares two different estimates of the 
population variance to test a hypothesis concerning the population mean. One 
of these estimates is within-group variance, which is simply the sum of the 
variances of each of the groups. It is analogous to the s p2  used in t tests, extended 
to the sum of the sample variances of more than two groups. It is called within- 
group variance because it is the collective variance of all observations within 
each group. By convention, within-group variance is denoted by s 2,,. The other 
estimate of variance is between-group variance, which measures the variation 
between the means of the various groups and is denoted by 4. The within- 
group variance and the between-group variance are also referred to as the mean 
squares or MS. The terms within-group variance and MS within are inter-
changeable as are the terms between-group variance and MS between. The 
ANOVA tables used in this chapter are labeled MS or mean squares. Using 
mathematical statistics, we can demonstrate that the between-group variance is 
equal to the within-group variance if the means of each group are equal; that is, 
there is no treatment effect. 

With this knowledge, we can perform a test of the hypothesis of equality of 
means by comparing the ratio of the two variance estimates, q,/s, 2,,. If the two 
variances are indeed equal, the ratio 4, s 2u, should be approximately 1. Because 
we are dealing with s2, an estimate of o-2, the ratio will sometimes be greater and 
sometimes smaller than 1 even if the hypothesis of equal means is true. The 
ratio s /2, s_2a, follows the F distribution and is illustrated in Figure 10.1. 

In fact, there is a family of F distributions, one for each pair of degrees of free-
dom. The F statistic follows a skewed distribution, with two sets of degrees of 
freedom. The variance estimate s i2, has k — 1 df, where k is the number of groups; 
s,2,, has k(n, — 1), where is the number of observations in each group. The num-
ber of observations per group do not have to be equal. The table in Appendix B 
gives critical values for the F distribution. Note that separate tabulations are 
provided for a = .05 and a = .01. For example, the critical F values for 2 and 
30 df are 3.32 for an a of .05 (Figure 10.1) and 5.32 for an a of .01. 

0 
	

F 
	

3 32 

Figure 10.1 Critical Value of F2,30  = 3.32, a = .05 
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(10.1) 
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10.3 ANOVA CALCULATIONS 

We need a systematic procedure for computing ANOVA. To illustrate the pro-
cedure, we use data from the general case shown in Table 10.1. We can see that 
there can be an unequal number of observations for each of the k groups. The 
formulas given next accommodate this situation. The observations within each 
group are indicated with double notation, where the first subscript indicates 
the group number and the second subscript indicates the observation in that 
group: for example, x 12  is the second observation in group 1. By extension, the jth 
observation in the ith group is indicated by x,j . The mean for group 1 is denoted 
by x 1  and is shown by 

The sum of all observations is given by 

k 	 rz, 

E E x„ 	 (10.2) 
i=1 j=1 

The overall mean is obtained by dividing the total of all observations by the 
total number of observations, 

N = E n i  

Table 10.1 Symbolic Representation of Data in a One-Way Analysis of k Groups, with Equal 

Number of Observations per Group 

Group   

1 

x„  

2 k      

Xk i  

X, 2 	 X„ 

X,3 	 Xk3 

Xki  

X 
Xtri 	

k„,  

IX-k; 

X i 	 Xk    

X 1 , 

x 1 3 

X 1 r x27  

Total 
Mean x, 

IEx,, (grand total) 
x (grand mean) 



i=1 	 j=1 

SSA, = E E (x.. 
k [n, 

(10.4) 

11 
.= 1 	 i =1 

— x) 2  ss t  =E E (x. 
k [ n, 
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where n, is the number of cases per group. Therefore, the overall mean is 

EExii  
N

x = 

Now the between-group sum of squares (SSb)—that is, the sum of the 
squared deviations between groups—is needed for computing the between- 
group variance. This SS b  can be obtained from Table 10.1 by use of 

SSb = 	 nj(X, – x)2 1 
=1 	 (10.3) 

= n 1 (x l  – 	 + n ( – 	 + • + nk(xk  – x)2  

The within-group sum of squares, SS„,, needed for computing the within- 
group variance, can be obtained by use of 

The total sum of squares, SS t, which measures the amount of variation about 
the overall mean, is the sum of the squared deviations of each x y  from the over-
all mean. To obtain it, we use 

A little algebraic manipulation shows that SSt  = SSb  + SS„,; that is, 

E
k p , 	 k [ n, 

E (xi;  — 421 = ± n i  [( -x 	 E (xi, — if] 
i=1 	 J -1 	 i=1 	 ,=1 _ J -1 

(10.5) 

which suggests that the total variation of observations from the overall mean 
can be partitioned into two parts: the variation of the sum of squares between 
groups and that of the sum of squares within groups. The total number of de- 
grees of freedom (En, – 1) is equal to the sum of the between group (k – 1) plus 
the within group (En, – k). 

From equations 10.3 and 10.4 it follows that the F statistic used to test the hy- 
pothesis of equality of means is 

F 	 —k 



2 

k 

x., i 
i=1 i--- 1 

SSb = E n i  
k 

E ni 
(10.7) 
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To complete an ANOVA table, we usually calculate only SS, and SS b. The SS„, is 
obtained by SS,, = SS t  — SSb . To calculate we use 

k 	 2 

k n 

ss t  = EE x 
i=1 j= 1 

(10.6) 

and 

i= 1 

10.4 ASSUMPTIONS 

To perform tests of hypotheses we need to make two assumptions: 

1. The observations are independent; that is, the value of one observation is 
not correlated with that of another. 

2. The observations in each group are normally distributed, and the variance 
of each group is equal to that of any other group; that is, the variances of 
the various groups are homogeneous. 

We should point out that ANOVA is a robust technique, insensitive to depar-
tures from normality and homogenity, and is particularly so if the sample sizes 
are large and nearly equal for each group. 

10.5 	 APPLICATION 

Let us return now to the question posed at the beginning of this chapter: Is there 
a significant difference in birthweight among three groups of infants classified 
by the smoking status of the mothers? The analysis procedure would be as 
follows: 

1. Ho : A i 	 ,u2  = ,u3 • 
Hi : That one or more mean is different from the others. 
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1 

2. Test statistic: F = 	 s 2„, for k - 1, En, - k df, or F = MSb/MS„, 
3. Rejection region: We reject H o  if the computed F statistic is greater than the 

tabulated value for a with the given degrees of freedom. 

Using the observations of Table 10.2 and the equations of Table 10.3, we can 
set things up in a conventional ANOVA table. Note that in Table 10.3 the mean 
squares are the sums of squares divided by their respective degrees of freedom. 

Table 10.2 Infant Birthweights (grams) and Means Classified by Smoking Status of Three 
Groups of Mothers 

Subject 

Smoking Status 

None 1 Pack/Day 1 + Pack/Day 

1 2 3 

1 3,515 3,444 2,608 
2 3,420 3,827 2,509 
3 3,175 3,884 3,600 
4 3,586 3,515 1,730 
5 3,232 3,416 3,175 
6 3,884 3,742 3,459 
7 3,856 3,062 3,288 
8 3,941 3,076 2,920 
9 3,232 2,835 3,020 

10 4,054 2,750 2,778 
11 3,459 3,460 2,466 
12 3,998 3,340 3,260 
n, 

1 X,1  43,352 40,351 34,813 EEx = 118,516 (grand total) 
i 

x, 3,613 3,363 2,901 x = 3,292 (grand mean) 

Table 10.3 ANOVA Table for a One-Way Classification with an Unequal Number of 
Observations per Group 

Source 
of Variation 	 Sum of Squares 	 df 	 Mean Squares 	 F ratio 

Between 

Within 

Total 

SS„ MS SS, = n,(x, - 	 k - 1 
MS1 	 k - 1 	 Fk-1 	 -k 	 x  ,   

SS,, = SS, - SS, 	 En, - k 	 s' 	
SS„, 
ni - k  

k n 

SS t  E E [(x- 42] 	 Vin ;  - 1 
j-1 



152 	 Chapter 10 / Analysis of Variance 

Using equation 10.6, we have 

SS, = 	 x2 – II 

= 398,915,214 – (118516)2  
36 

In, 

= [12(3613) 2  + 12(3363)2  + 12(2901) 2  

= 3,184,227.556 

The within sum of squares is, therefore, 

SS„, = SS, – SSb  

= 8,747,374.0 – 3,184,227.4 

= 5,563,146.6 

In ;  

= 8,747,373.556 

and using equation 10.7, we obtain 

( Ixij ) 2  
SSb  = In, z – 

(118,516) 2 
 36 

Now we are able to set up the ANOVA table for our illustration of the effect 
of maternal smoking (Table 10.4). From this table we can see that the computed 
F ratio is greater than the tabulated value of F233  = 3.29. This indicates that at 
least one of the means is significantly different from the others—that is, that ma-
ternal smoking appears to be associated with infant birthweight. To find out 
which means are significantly different, we may be tempted to perform a num-
ber of multiple t tests between the various pairs of means. But it would be in-
appropriate to do so unless we wanted to know whether there was a significant 
difference between the nonsmokers and the heavy smokers before seeing the re-
sults. Multiple t tests are inappropriate because the probability of incorrectly re-
jecting the hypothesis increases with the number of t tests performed. So even 

Table 10.4 ANOVA for Infant Birthweight Classified by Mother's Smoking Status 

Source SS df MS 

Between 
Within 
Total 

3,184,227.5 
5,563,146.6 

2 
33 
35 

1,592,113.7 
168,580.2 

9.44 

8,747,374.1 
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though we may be performing a test of significance at a = .05, the actual a level 
is, in effect, made considerably higher. A number of multiple comparison proce-
dures have been proposed by statisticians. One that is fairly easy to use was de-
veloped by Tukey (1968) and is discussed in the following section. 

).6 	 TV KEY'S HSD TEST 

Tukey's HSD (honestly significant difference) test is used to test the hypothesis 
that all possible pairs of means are equal. Tukey's HSD can only be used if there 
are an equal number of observations in each group. To perform this multiple 
comparison test, we select an overall significance level, a, which denotes the 
probability that one or more of the null hypotheses is false. The HSD value is 
then computed and all differences are compared to it. Those pairs whose differ-
ences exceed the HSD are considered significantly different. The formula for 
computing HSD is 

HSD = q(a, k, N — V (10.8) 

where a is the selected significance level; k, the number of groups; N, the total 
number of observations; 11, the number of observations per treatment group; 
MS„, the within-mean-square error term; and q is obtained from the table in 
Appendix C. 

n EXAMPLE 1 

To determine which of the pairs of groups in Table 10.2 

x i  — x2  = 3613 — 3363 = 250 

xZ  — x3  = 3363 — 2901 = 462 

— x3  = 3613 — 2901 = 712 

is significantly different, we compute the HSD test. Using a = .05, k = 3, and 
N — k = 36 — 3 = 33, we find from Appendix C that q is about 3.48. From Table 
10.4, MS„, is 168,580 and from Table 10.2, n = 12. Therefore, 

168,580 
HSD = 3.48 

12 

= 3.48(118.5) = 412 

Because x2  — x3  and Xi  — x3  exceed 412, we conclude that there is a significant 
difference between the birthweight of infants of mothers who do not smoke 
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versus those who smoke 1+ pack/day and between the birthweight of infants 
of mothers who smoke 1 pack/day versus 1+ pack/day. The difference in birth- 
weight of infants of mothers who did not smoke versus those who smoked only 
1 pack/day was not significantly different. n 

We have discussed ANOVA with unequal number of observations per treat-
ment. The equations, however, will also accommodate unequal numbers of 
treatments. So far, we have considered only the one-way ANOVA classification. 
It is possible to work with two-way, three-way, or multiple-way classifications 
as well. For example, a two-way ANOVA might consider four treatment groups 
for each sex group, with the second classification being by sex. This method is 
discussed in the next section. 

10.7 RANDOMIZED BLOCK DESIGN 

A randomized block design is a design in which homogeneous blocks are di-
vided into experimental units to which the treatments are assigned in a random 
fashion. The purpose of this design is to remove from the error term the varia-
tion due to the blocks. Each block has one experimental unit for each treatment 
and each treatment is represented in each block. Table 10.5 shows the layout of 
the data from a study that used a randomized block design. (Note that here we 
use double notation, which facilitates the handling of the formulas). There are k 

treatment effects (effects due to some stimulant) and n blocks. Blocks can be ho-
mogeneous subgroups stratified on age, weight, SES (socioeconomic status) 
group, or other factors. One of the first things usually done is to observe what 
the treatment and block means are. They are computed in the following fashion. 
The mean for the first treatment is given by 

x„ 	 xi  = 	 = 
n 	 it 

Table 10.5 Symbolic Representation of Values for the Randomized Block Design with k 

Treatment and n Blocks 

Blocks 

Treatments 

1 2 3 k Total Mc 

1 
2 
3 

// 

Total 
Mean 

xii 
x, 
x„ 

X ,. I 

x. , 
x , 

X i2  

xy, 

X32 

• 

X „, 

x., 
x., 

X l3  

x,, 

X 33 

X/F3 

X. 3 

 X.3 

X . 
x,k  

X„,,. 

x k  
X•k 

X I . 

x,. 
x, 

X, 

X.. 

X i  . 

x,. 
x,. 

X„ 

1 

1 

1 

III I 
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and the mean for the first block is given by 

k 1 .0,A  

n 

The sum of all the observations is given by 

k 	 k 

E E xi, = x 
i=, j=1 

Note that we are assuming we have a balanced design; that is, each block has k 
treatments and each treatment has n blocks. 

n EXAMPLE 2 

Let us look again at the relationship between maternal smoking and infant 
birthweight, but taking the mother's weight into account. We will look at the 
same three treatment groups as before: mothers who did not smoke, those who 
smoked up to 1 pack/day and those who smoked 1+ pack/day. The six weight 
groups, in increments of 5 kg, are the six blocks. Technically, this design as-
sumes that the smoking "treatment level" was assigned randomly to the preg-
nant women in a particular block (weight group). Such an assignment, how-
ever, was not the case. The data are shown in Table 10.6. 

From the means in the table, we can see that there is an inverse relationship 
between maternal smoking and infant birthweight; that is, the means for the 
three smoking groups decrease with an increased level of smoking. There is also 
a direct relationship between prepregnancy weight and infant birthweight; that 
is, the birthweights increase as the mother's weight increases. To determine 
whether there is a significant treatment (smoking) effect after we remove the 

Table 10.6 Infant Birthweight (grams) and Means Classified by Maternal Smoking Status 
and Prepregnancy Weight Group 

Blocks 
Group (kg) 

Treatments 

Total Mean None 1 Pack/Day 1 + Pack/Day 

45-49 3,175 2,750 1,730 7,655 2,552 
50-54 3,232 2,835 2,466 8,533 2,844 
55-59 3,240 3,062 2,509 8,811 2,937 
60-64 3,420 3,076 2,608 9,104 3,035 
65-69 3,459 3,340 2,778 9,577 3,192 
70-74 3,515 3,416 2,920 9,851 3,284 
Total 20,041 18,479 15,011 53,531 
Mean 3,340 3,080 2,502 2,974 



156 	 Chapter  10 / Analysis of Variance 

variation due to blocks (prepregnancy weight), we need to prepare an ANOVA 
table. As in the one-way ANOVA, the total sum of squares can be partitioned 
into three parts: the effect due to blocks, that due to treatment, and a residual 
part similar to the within term we saw before—that is, 

SS, = SS b  + SS„ + SSr  

The formulas for these are 

SS, = EI(x„ – 	 = 	 – CT 

SSb  = EE(i,. 	 ) 2  = EEX 2,. – CT 

SS„ = EE(X.• – X.. ) 2  = 	 – CT 

SSr  = EE(xii  – 	 + X..) 2  

CT, the "correction term," is given by 

(Ex )2 X
2 

CT = – 	
_

kn kn 	 n  

We can apply these formulas to the data in Table 10.6 and obtain 

EEx2 	 (53 531)2 2 865 567 961 
= 	 '

18 	
= 159,198,220 

3(6) 
k 

SS, = E E x2 - CT 
i=i ] =1 

= 162,716,841 – 159,198,220 = 3,518,621 

k 

SS b  = E E x2.-;  - CT = k(x.21  + • • + x26) – CT 
i-1 i=i 

= 3(25522  + • • • + 32842) – CT 

= 3(53,411,754) – 159,198,220 

= 1,037,042 
k 	 n 

SS„ = E E - CT = 	 + 	 + x _33 .) – CT 
i=1 j=i 

= 6(33402  + 30802  + 25022) – CT 

= 6(26,902,004) – 159,198,220 

= 2, 213,804 
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SS, = SS, — SS ,, — SS, 

= 3,518,612 — 1,037,042 — 2,213,804 

= 267,766 

The degrees of freedom are also partitioned, as follows: 

Total = blocks + treatments + residual 

kn — 1 = (n — 1) + (k — 1) + (n — 1)(k — 1) 

For our example, these would be 

18 — 1 = (6 — 1) + (3 — 1) + (6 — 1)(3 — 1) 

17 = 5 + 2 + 10 

The layout for the ANOVA table for the randomized blocks design is shown in 
Table 10.7. 

Because we are interested in knowing whether there is a treatment (maternal 
smoking) effect on infant birthweight after removing the variation due to 
prepregnancy weight, we proceed as follows: 

1. State the Ho : There is no treatment (smoking) effect. 
2. We calculate the F ratio using the formula from Table 10.7. If the Ho  is true, 

both MS(SS„) and MS(SS,) are estimates of u 2 . Therefore, the F ratio should 
be about 1.0. 

3. If the Ho  is true, the quantity 

ms(sstr)  
MS(SSr) 

Table 10.7 ANOVA Table for the Randomized Complete Block Design 

Source of 	 Sum of 
Variation 	 Squares 	 df 	 MS 	 F ratio 

Treatments 	 SS„ 	 k — 1 

Blocks 	 SS, 	 n — 1 

Residual 	 SS, 	 (k — 1)(n — 1) 

SS„ 	 MS(SS„) 
k — 1 	 MS(SS,) 

SSb 
n — 1 

SS, 
(k — 1)(n — 1) 

Total 
	

SS, 	 kn — 1 
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should follow an F distribution with (k — 1) and (k — 1)(n — 1) degrees of 

freedom. If the computed value of F is greater than the critical value from 

the F table, we reject the Ho . 

We can now prepare the ANOVA table and reach a decision: 

Source SS df MS 

Treatments 2,213,804 2 1,106,902 41.3 

Blocks 1,037,042 5 207,408 

Residual 267,766 10 26,777 

Total 3,518,621 17 

Our computed value of F = 41.3 is greater than the critical 1% F210 = 7.56, so 

we reject the Ho  of no treatment (smoking) effect at the a = .01 level. To find out 
which pairs of means are significant, we could apply Tukey's HSD test. n 

To perform the test of Ho  we need to make the following assumptions: 

1. The observations, x11, are normally distributed. 

2. The treatment effects, the block effects, and the residuals (x ii  — 	 — x + 

x ) are independent and have the same variances. 

The ANOVA technique is quite robust to any violations of these assumptions. 
Therefore, the results are still valid even when the assumptions are not strictly 
met. If the violations are considerable, we can frequently remedy the situation 
by transforming the x ii  by taking a log, square root, or reciprocal of them. 

Because this is an introductory level text, the presentation of the ANOVA 
technique is necessarily brief. To learn more about the procedure, readers 
should consult such textbooks on experimental design as Snedecor (1956) or 
Steel and Torrie (1980). 

Conclusion 

The analysis of variance is so named because its test procedure is based on a 
comparison of the estimate of the between-group variance to the estimate of the 
within-group variance. These two estimates of u 2  are obtained by partitioning 
the overall variance. An F statistic is used to determine the critical region for the 
test. If the computed F ratio falls in the critical region, we conclude that at least 
one of the means is significantly different from the others. To determine which 
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specific pairs of means are significant, we utilize a multiple range test, not mul-
tiple t tests. To test the hypothesis, we must assume independence of observa-
tions, normality of each group, and homogeneous variances. An important 
interpretation of ANOVA is that it tests whether there is a treatment effect, 
where the treatment is drug dosage, smoking exposure, or some other factor. 

In this chapter we discussed the one-way classification of variance. To be able 
to account for the many possible sources of variation in a particular experiment, 
you may wish to perform a two-way or a three-way ANOVA. 

Vocabulary List 

ANOVA 
between-group sum of 

squares 
between-group variance 
double notation 
F distribution 

homogeneous variances 
mean squares 
multiple comparison 

tests 
randomized block 

design 

robust technique 
treatment effect 
Tukey's HSD test 
within-group sum of 

squares 
within-group variance 

Exercises 

10.1 	 A survey was done in a community in which residents were asked if they felt that 
family planning counseling was needed in the community. The tabulation in the 
accompanying table gives the opinions and the number of children of the 
respondents. 

Determine whether there is a difference in mean number of children of 
respondents. 
a. Give the null hypothesis. 
b. Construct an ANOVA table. 
c. State your results and conclusions. 

Great Need Some Need No Need 

0 10 17 
1 5 10 
3 7 9 
4 3 3 

Number of children 2 9 15 
1 8 10 
3 7 11 
0 9 10 
1 10 9 
2 9 8 

N'„ 17 77 102 196 (grand total) 

x 1.7 7.7 10.2 6.53 (grand mean) 

10.2 Five samples were taken randomly from each blood type, and the white cell 
counts were noted to be as follows: 
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Blood Type 

A 	 B 	 AB 

	

5,000 	 7,000 	 7,000 	 5,325 
White cell counts 	 5,500 	 8,000 	 7,125 	 7,985 

	

8,000 	 5,000 	 9,000 	 6,689 

	

10,000 	 9,900 	 9,235 	 9,321 

	

7,735 	 6,342 	 7,699 	 6,666  

	

36,235 	 36,242 	 40,059 	 35,986 	 148,522 (grand total) 
x 	 7247.0 	 7248.4 	 8011.8 	 7197.2 	 7426.1 (grand mean) 

Are the four blood types the same with respect to white cell counts? 
10.3 Seven samples of individuals were selected randomly from three communities. 

The ages of the persons were as tabulated: 

Community A 	 Community B 	 Community C 

	

16 	 65 	 45 

	

15 	 43 	 30 

	

25 	 77 	 22 
Age 	 30 	 90 	 66 

	

39 	 82 	 47 

	

20 	 69 	 33 

	

16 	 73 	 50 
N'x 	 161 	 499 	 293 	 953.00 (grand total) 
x 	 23 	 71.29 	 41.86 	 45.38 (grand mean) 

Is there a significant difference in the ages? 

10.4 Measurements on cumulative radiation dosage were made on workers at an 
atomic weapons plant over a six-month period. The following table presents data 
for workers whose dosage was assessed at three different locations. Determine 
whether there was a significant difference in the mean dosage level among the 
three locations. 

Location A Location B Location C 

11 
27 
19 

29 
41 
19 

37 
51 
42 

Cumulative 21 39 28 
radiation 31 24 35 
dosage 14 35 48 

28 46 75 
22 64 49 
18 52 61 
10 23 52 

Ex 201 372 478 1051 (grand total) 
x 20.1 37.2 47.8 35.03 (grand mean) 
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10.5 a. Describe the differences between a one-way and two-way ANOVA. 
b. What are the assumptions made when one performs an ANOVA? 
c. What H0  is usually tested with a one-way or a two-way ANOVA? 

10.6 a. Why does one use a multiple comparison test such as Tukey's HSD rather 
than a t test? 

b. How would your results differ if you were to use the t test rather than Tukey's 
HSD test? 

10.7 What are the following critical F values for the a = .05 level? 

a. F1,16 	 ; F3,16 	 ; F3,36  — 	  
b. What are these critical values for a = .01? 

10.8 a. What are the degrees of freedom for between, within, and total treatments for 
a one-way ANOVA with 4 treatments and 10 subjects in each treatment? 

b. What are the degrees of freedom for each of the components of a randomized 
complete block design with 5 treatments and 3 blocks? 

10.9 Perform Tukey's HSD test for the following ANOVAs to determine which pairs 
are significantly different: 
a. Exercise 10.1 
b. Exercise 10.3 

10.10 Complete the following ANOVA table: 

Source 	 SS 	 df 	 MS 	 F 

Between 	 360 
Within 	 450 	 15 

Total 	 19 

Is the F ratio significant at the a = .05 level? 

10.11 a. Prepare an ANOVA table using the equation for unequal sample sizes for the 
data in Exercise 10.3, assuming that the fourth and fifth observations are miss-
ing for Community B and the fourth observation for Community C. 

b. How do the results differ from those when no observations were missing? 

10.12 Complete the following ANOVA table: 

Source 	 SS 	 df 	 MS 	 F 

Treatment 	 160 	 4 
Blocks 	 5 
Error 	 200 

Total 	 600 	 29 

What is your conclusion regarding the significance of the treatment effect? 

10.13 An investigator wants to determine whether there is a significant difference be-
tween three different smoking cessation programs in terms of recidivism. He also 
wants to learn whether being part of a different weight group plays a role in 
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earlier recidivism. He conjures up a study to see how many days a person was 
smoke-free during the first 30 days. The following are his data: 

Weight Groups A 
Program 

B C 

121-140 30 25 21 
141-160 25 23 20 
161-180 27 20 22 
181-200 25 19 16 
201-220 20 18 14 

220+ 22 14 18 

a. Prepare an ANOVA table. 
b. Determine whether there is a difference in the three programs. 
c. Which program pairs are significant at a = .05? 
d. Perform a test to determine if weight plays a role in recidivism. Is the 

MS(blocks) significant at a = .05? 

10.14 You obtained a calculated F of —4.50. Under what circumstances would you cal-
culate a —F ratio? Explain. 

10.15 A researcher wanted to determine if different cereals had varying effects on 
growth and weight gain. A laboratory experiment was designed so that each of 
5 groups of newly weaned rats were fed a diet of a particular brand of cereal. 
Each group had 7 rats for a total of 35 rats. At the end of the experimental period, 
the animals were weighed and their weight in ounces recorded in the following 
table. 

A 
Brand 

9 5 2 6 3 
Weight 7 4 1 5 8 
gain 8 6 1 5 9 
(ounces) 9 5 3 5 2 

6 6 2 6 5 
8 7 2 7 7 
9 2 3 8 1 

a. Complete the following ANOVA table. 

Source 
	

SS 	 df 	 (MS) ors-  

Between 
Within 

Total 

b. Was the F ratio that was obtained significant? Explain. 
c. Perform a Tukey test, if you found a significant F. 



I 1 Inferences Regarding Proportions 

Chapter Outline 

11.1 Introduction 
Discusses the problem of inference in qualitative data 

11.2 Mean and Standard Deviation of the Binomial Distribution 
Explains how to compute a mean and a standard deviation for the 
binomial distribution 

11.3 Approximation of the Normal to the Binomial Distribution 
Shows that, using the normal approximation, it is possible to com-
pute a Z score for a number of successes 

11.4 Test of Significance of a Binomial Proportion 
Gives instructions on how to test hypotheses regarding proportions 
if the distribution of the proportion of successes is known 

11.5 Test of Significance of the Difference Between Two 
Proportions 
Illustrates that, because the difference between two proportions is 
approximately normally distributed, a hypothesis test for the differ-
ence may be easily set up 

11.6 Confidence Intervals 
Discusses and illustrates confidence intervals for 7r and 77- 1  — 77-.)  

Learning Objectives 

After studying this chapter, you should be able to 

1. Compute the mean and the standard deviation of a binomial distribution 

2. Compute Z scores for specific points on a binomial distribution 

3. Perform significance tests of a binomial proportion and of the difference between 
two binomial proportions 

4. Calculate confidence intervals for a binomial proportion and for the difference be-
tween two proportions 

163 
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11.1 	 INTRODUCTION 

Is there a significant difference in the risk of death from leukemia for males and 
females? Is the proportion of persons who now smoke less than it was at the 
time of publication of the Surgeon General's Report on the hazards of smoking? 
These are typical questions that cannot easily be answered by the methods dis-
cussed in the previous chapters. Why not? The methods previously discussed 
are applicable to quantitative data such as height, weight, and blood pressure for 
which a mean and standard error can be computed. The new questions deal 
with qualitative data—data for which individual quantitative measurements are 
not available, but that relate to the presence or absence of some characteristic, 
such as smoking. For these data, we have a new statistic, p, the estimate of the 
true proportion, 7F, of individuals who possess a certain characteristic. Previ-
ously we dealt with 5-c, the mean value of some characteristic for a group of in-
dividuals. 

This chapter focuses on (1) the mean and the standard deviation of x, the 
number of successful events in a binomial experiment, and (2) the mean and the 
standard error of p, the proportion of successful events observed in a sample. To 
best understand the difference between the distribution of binomial events (x) 
and the distribution of the binomial proportion (p), try comparing these distri-
butions to those in the approximate analogous quantitative situation. Roughly 
speaking, the x's of a binomial distribution correspond to the quantitative x's in 
a distribution with a mean p, and a standard deviation cr. The p's of the binomial 
correspond to the x's in a distribution with a mean A i  and a standard error 

vn. 
This chapter considers the tests of significance for proportions, differences 

between two proportions, and the confidence intervals for both. 

11.2 MEAN AND STANDARD DEVIATION OF THE 
BINOMIAL DISTRIBUTION 

In Chapter 5 we learned that the probability of x successful outcomes in n inde-
pendent trials is given by 

(Px(1 – 
xn ) 

where P is the probability of a success in one individual trial. To be consistent in 
using Greek letters to designate unknown parameters, in this chapter we use it 
to designate the probability of x successful outcomes. 

Using mathematical statistics, we can show that in a binomial distribution, 
the mean for the number of successes, x, is 
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= n77- 	 ( 11.1) 

and the standard deviation is 

a-  = \in7r(1 — 7r) 	 (11.2) 

1.3 APPROXIMATION OF THE NORMAL TO THE 
BINOMIAL DISTRIBUTION 

The normal distribution is a reasonable approximation to the binomial when n 
is large. Therefore, we can find the point on the Z distribution that corresponds 
to a point x on the binomial distribution by using 

x — n7r 
Z 	  

V n7r(1 — 7r) 
(11.3) 

In Chapter 5 we showed that when the number of trials or cases is greater 
than 30, it would be quite cumbersome to evaluate the binomial expansion to 
find the exact probability of the occurrence of a certain event. Mathematical sta-
tisticians have demonstrated that the continuous normal distribution is a good 
approximation to the discrete binomial, providing the following relationships 
are satisfied: 

n7T 5 and n(1 — 7r) 5 

Hence, with the use of the well-known equations for the mean and the standard 
deviation of the binomial distribution, shown in Figure 5.3, it is a simple task to 
approximate the probability of a binomial event. 

n EXAMPLE 1 

A group of physicians treated 25 cases of chronic leukemia, a disease for which 
the five-year survival rate was known to be .20. They observed that 9 of their pa-
tients had survived for five years or more. They wanted to know whether such 
an event was unusual. What is the probability, out of 25 cases, of observing 9 or 
more "successes" (i.e., survival for five or more years)? 

First, we compute the mean and the standard deviation: 

p = 117T = (25)(2) = 5 

= Vn7r(1 — 72- ) = \125(.2)(.8) = 2 

Then we compute the Z score: 
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nit = 5 
	

9 
0 
	

2.0 

Figure 11.1 Approximation to the Binomial Distribution for Example 1 

x — nrr 	 9 — 5 	 4 
Z     = = 2.0 

Vinr(1 — 7r) 	 1/25(.2)(.8) 	 2  

The result: 9 five-year survivals on the binomial distribution corresponds to a Z 
of 2.0 on the normal distribution, as shown in Figure 11.1. The area beyond 
Z = 2.0 is .023. Therefore, the probability of five-year survival for at least 9 of 25 
patients is .023, whereas the probability of five-year survival for 1 patient is .20. 

n 

Because we are using a normal (continuous) distribution to approximate a 
discrete one, we may apply the continuity correction to achieve an adjustment. 
This correction is made by subtracting one-half from the absolute value of the 
numerator; that is, 

n 7r — 1/2 

V n7(1 — 77- ) 

1 9 	 51 — 1 /2 	 3.5 

1/25(.2)(.8) 	 2  

and P(Z > 1.75) = .0401, a result nearly two times that obtained without the 
correction. The continuity correction will not make a large difference when n is 
large. 

When n is very large and 7r is very small, another important distribution, the 
Poisson distribution, is a good approximation to the binomial. It deals with 
discrete events that occur infrequently. For a treatment of this subject, see more 
advanced textbooks, such as Armitage (1971). 

11.4 TEST OF SIGNIFICANCE OF A BINOMIAL PROPORTION 

The previous section considered the distribution of the binomial event x. This 
section considers the distribution of the binomial proportion p, which is similar 
to considering the distribution of x for quantitative data. 

— 	 = 1.75 
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The mean of the distribution of a binomial proportion p is given by the pop-
ulation parameter 

x number of successes in the  population  
n 	 number of cases in the population 

and the standard error of p is given by 

V-77- (1 — 7r)  
n 

 

Because p appears to be normally distributed, providing n is reasonably large, 
we can find the Z score corresponding to a particular p and perform a test of sig- 
nificance. 

n EXAMPLE 2 

There were 245 deaths from leukemia in California one year. Of these, 145 were 
males, 

145 
p = -- 	 = .59 

245 

and 100 were females, 

100  
1 	 p 245 	

.41 
 

Is .59, the observed proportion of male deaths, significantly different from the 
expected .49, the proportion of males in the California population? 

7F = .49 	 1 — 7T = .51 	 n = 245 

	

7r(1  	 7r) _ 	 (49)(51) 
.032 SE(p) = 	 = 

	

n 	 245 

Using the steps of a test of a hypothesis, we get the following results: 

1. Ho : 71" = .49; there is no sex difference in the proportion of deaths. 
2. a = .05. 
3. Test statistic: 

	

p —  77" 	 .59 — .49 	 .10 
Z =  	 = 	 = 3.12 

	

SE(p) 	 .032 	 .032 

'77' =- (11.4) 

(11.5) 

(11.6) 

I 



159 — .491 — 1 2n 

.032 

.10 — .002 	 .098 
= 	 = 3.06 

.032 	 .032 
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025 
	

025 

TC = 49 

-1.96 
	

0 
	

+1.96 

Figure 11.2 Critical Region for Example 2 

4. Critical region: From the Z distribution (Table A, back inside cover), we 
find that Z is -±1.96 (Figure 11.2). 

5. The computed Z of 3.12 is greater than the critical value of 1.96, so we re-
ject the null hypothesis that the proportion of deaths from leukemia is the 
same for both sexes and conclude that the risk of dying from this disease 
is greater for males than for females. If we apply the continuity correction 
in this example, we will have 

which actually makes very little difference in the result. n 

11.5 	 TEST OF SIGNIFICANCE OF THE DIFFERENCE BETWEEN 
TWO PROPORTIONS 

In practice, you seldom have a convenient population proportion for compari-
son. More commonly, you will be called upon to compare proportions from two 
different samples, possibly one from a control group and the other from a treat-
ment group; that is, we assume that 77-1  = r2  in estimating SE(p 1  — p2). In such a 
case, you want to learn if p 1 , the proportion with the given characteristic in one 
sample, differs significantly from p 2, the proportion with the same characteris-
tic in the other sample. To do this, you need to know the distribution of the dif-
ferences (p 1  — P.,) and the mean and the standard error of this distribution. 
Mathematical statisticians have shown that p l  — p2  follows a nearly normal dis-
tribution. The mean is 

= Pl — P2 
	 (11.7) 



Section 11.5 / Test of Significance of the Difference Between Two Proportions 	 169 

The standard error is estimated by 

SE(pi  — p2) = 	 II -F P ; 

where 

p , 	 + x2  
and q' = 1 — p' 

n i  + n2  

(11.8) 

(11.9) 

and 

xl  
Pi = ni 

and 

x2  
P2 - n2 

Knowing the mean and the standard error of the distribution of differences, we 
can calculate a Z score: 

z = P1 - P2 - ( 7Tri —  Viz)  
SE(p 1  — p2) 

If 77-1  t 72, the formula for SE(pi  — p2) is 

Viri( 1 	 7r2( 1 	 7r2)  

ni 	 n 2 

(11.12) 

n EXAMPLE 3 

A public health official wishes to know how effective health education efforts 
are regarding smoking. Of 100 males sampled in 1965 at the time of release of 
the Surgeon General's Report on the Health Consequences of Smoking, 51 were 
found to be smokers. In 1990, a second random sample of 100 males, similarly 
gathered, indicated that 31 were smokers. Is the reduction in proportion from 
.51 to .31 statistically significant? 

51 	 31 
pi =

100 
 = .51 	 p2 =

100 
 = .31 
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51 + 31 	 82 
 = .41 

100 + 100 200 

/(.41)(.59) 	 (.41)(.59) 

SE(P ' — P:) = Nf  100 	 + 	 100 

= V.004838 = .070 

Again we apply the steps for a hypothesis test: 

1. Hot 7r1  — 7T-2  0 (there has not been a reduction in smoking) versus 

H1: 71- 1  — 77-2  > 0 (there has been a reduction). 

2. a = .05. 

3. Test statistic: 

p2  — 0 _ .51 — .31 	 .20 
Z 	 2.86 

SE(p 1  — P2) 	 .07 	 .07 

4. Critical region: The Z distribution (Table A) shows Z > 1.64. 

5. The computed Z of 2.86 is more than the critical value of 1.64. Conse-
quently, on the basis of the information of this sample, the official rejects 
the null hypothesis that there has not been a significant reduction in ciga- 
rette smoking 25 years after publication of the Surgeon General's Report. 

n 

11.6 	 CONFIDENCE INTERVALS 

Although hypothesis testing is useful, we often need to go another step to learn, 
say, the true proportion of male smokers in 1990 or the true difference in the 
proportion of male smokers between 1990 and 1965. To deal with such ques-
tions, we compute confidence intervals for 7T and for 7 1  — 72  by employing a 
method parallel to the one used for computing confidence intervals for ,u and 

/1 1 

Confidence Interval for 7T 

In Chapter 8 we found the confidence interval ofµ to be 

cr 
x ± Z - 

ti n 

Similarly, the confidence interval for 7T is 

/7r(1 — 7r) 
piZN 
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This expression presents a dilemma: It requires that we know 7T , which is un-
known. The way out of this puzzle is to have a sufficiently large sample size, 
permitting the use of p as an estimate of 7r. The expression then becomes 

p _4._ 7 P ( 1 	 P) _ 

The solution for small sample sizes is known but is derived from the binomial 
distribution. Some statistical textbooks feature them. 

n EXAMPLE 4 

In the previous example the public health official estimated that the proportion 
of male smokers in 1990 was .31. As this was only a sample estimate, the official 
also needed to obtain a confidence interval to bracket the true 7T and therefore 
calculated as follows: 

95% CI for IT = p ± 1.96 - iP(1 	 P)  
V 	 n 

/(.31)(.69) 
= .31 + 1.96 Ni 

= .31 -± .09 

= (.22, .40) 

The official now could have 95% confidence that the true proportion of male 
smokers in 1990 was between .22 and .40. n 

Confidence Interval for the Difference of 77 1  - 772  

The confidence interval for the difference of two means is 

CI for 	 — µz  = x i  — xz  ± Z[SE(i i  — x2)] 

The confidence interval for the difference of two proportions is similar: 

CI for 7r i  — 7r2 = pi - p2 ± Z 

n EXAMPLE 5 

Pi( 1  — Pi) +  P2( 1  -- 
1/2 

To find the confidence interval on the true difference between male smokers in 
1990 and 1965, the public health official would perform the following calcula-
tion: 

I 
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95% CI for 71" T 2 = p — p2  ± 1.96 \IP1(1  — Pi) 	 P2(1  — P2)  

n i 	 "2 

.51(.49) 	 .31(.69) 

— 31  ± 1 .96  Ni  100 + 100 

= .20 ± .133 

(.067, .333) 

These figures would give the official 95% confidence that the reduction in 
percentage of smokers may have ranged from 6.7% to 33.3% over the 25-year 

period. n 

Conclusion 

The normal approximation to the binomial is a useful statistical tool. It helps 
answer questions regarding qualitative data involving proportions where in-
dividuals are classified into two categories. The mean and the standard devi-

ation are, respectively,  kt = nir and a-  = \/1777-  (1 — 7), giving a Z score of 

(x — n'7r)/ n77- (1 — 7). With an understanding of the distribution of the bino-
mial proportion p and of the distribution of the difference between two propor-
tions, p i  — p2, we can perform tests of significance and calculate confidence 
intervals. 

Vocabulary List 

binomial proportion 	 continuity correction 	 Poisson distribution 

Exercises 

11.1 	 For the Honolulu Heart Study data of Table 3.1, compute 
a. the proportion of individuals in each education category 
b. the proportion of smokers and nonsmokers 
c. the proportion for each physical activity level 

11.2 	 Using your results from Exercise 11.1b, calculate estimates of the mean and the 
standard deviation of the proportion of smokers. 

11.3 	 Given that the proportion of smokers in the United States is .31, test to see if the 
proportion of smokers in Honolulu is significantly different from the national 
proportion. Use a = .05. 

11.4 	 What is the 95% confidence interval for the proportion of smokers in Honolulu 
for 1969? Refer to Exercise 11.1b. 

11.5 	 In a study of hypertension and taste acuity, one variable of interest was smoking 
status. Of the 7 persons in the hypertensive group, 4 were smokers. The control 
group of 21 normotensive persons included 7 smokers. Is there a difference in the 
proportion of smokers in the two groups at the .05 level of significance? 
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11.6 	 Construct a 90% confidence interval for the difference in the proportions of 
smokers in the hypertensive and normotensive groups of Exercise 11.5. 

	

11.7 	 In a study of longevity in a village in Ecuador, 29 persons in a population of 99 
were age 65 or older. If it is also known that 20% of the U.S. population is 65 or 
over, does it appear that the proportion of Ecuadorian villagers surviving to 65 
and beyond exceeds that of people in the United States? Use a = .01. 

11.8 Calculate a 99% confidence interval for the proportion of Ecuadorians (Exer-
cise 11.7) who are age 65 or over. 

11.9 Of 186 participants in a program to control heart disease, it was discovered that 
102 had education beyond secondary school. Does this indicate that the program 
is attracting a more highly educated group of people than would be expected, 
given that 25% of the U.S. population has education beyond secondary school? 
Use a = .01. 

11.10 In a study of drug abuse among adults, 55 of 219 "abusers" and 117 of 822 
"nonusers" stated they started smoking cigarettes at age 12 or younger. Do these 
data indicate there is a significant difference in the proportions of abusers and 
nonusers who took up smoking at an early age? 

11.11 In a dental study of a tie between infant occlusion and feeding methods, there 
were 27 breast-fed and 60 bottle-fed infants. It was noted that 7 of the breast-fed 
babies and 26 of the bottle-fed babies developed a related open-bite gum pad in 
the first four months of life. Would you conclude that the bottle-fed group 
showed a higher proportion of the open-bite gum pad problem? Use a = .05. 

11.12 Compute the following confidence intervals for the difference in proportions, 
7r 1 — /72 :  

a. 99% CI for Exercise 11.10 
b. 95% CI for Exercise 11.11 

11.13 a. What are the mean and standard deviation of x, the number of successes in a 
binomial distribution? 

b. What is the difference between p and 7r? 
c. What are the mean and standard deviation for the binomial proportion p? 
d. Under what condition is the normal distribution a reasonable approximation 

to the binomial distribution? 

11.14 Public health officials found that, in a random sample of 100 men in a small com-
munity, 13 were infected with AIDS. 
a. Obtain an estimate of the proportion of men infected with AIDS in that com-

munity. 
b. Calculate the 95% CI for 7r, the true proportion of men infected with AIDS. 

11.15 A random check of drivers on a busy highway revealed that 60 out of 100 male 
drivers and 70 out of 100 female drivers were wearing their seat belts. 
a. Obtain estimates of the proportion of male and female drivers who wear seat 

belts. 
b. Construct a 99% CI for 7r, — 7r 2, the true difference of wearing seat belts be-

tween males and females. 
c. Is the observed difference between males and females significant at the 

a = .01 level? 
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11.16 A survey of 100 women and 100 men indicated that 49 of the women and 35 of 
the men said they are trying to lose weight. 
a. Estimate the difference in the proportion desiring to lose weight between men 

and women. 
b. Perform a test of significance to determine whether or not this difference is 

significant at the a = .05 level. 
c. Calculate a 95% CI for 77 1  - 7T, 

d. Do the results from (b) and (c) support or contradict each other? Why? 

11.17 A nationwide survey of medical complaints indicated that 43 out of 100 people in 
the Southwest and 22 out of 100 people in the region close to the nation's capital 
suffered from allergies. Is this a chance difference? Are the data consistent with 
the hypothesis that geography plays a role? (Use a = .01.) 

11.18 A fitness survey found that 35 out of 100 women and 25 out of 100 men did not 
exercise. Is this likely to be a real difference or can it be explained by chance? 
Construct a 95`)/0 CI for the difference and state your conclusion. 

11.19 A random sample of 100 industrial workers found that 13 of them were exposed 
to toxic chemicals routinely on their job. Prepare a report that will provide man-
agement with information regarding the magnitude of this problem. What statis-
tic or statistics would you include in your report? 

11.20 As of September, 1996, 14 states had lowered the legal blood alcohol limit from 
0.10% to 0.08%. A "study was undertaken to a__ 2SS whether, relative to nearby 
states, states adopting a 0.08% legal limit experienced a reduction in the propor-
tion of fatal crashes involving (1) fatally injured drivers with blood alcohol levels 
of 0.08% or higher and 0.15% or higher, and (2) any driver with a blood alcohol 
level of 0.08% or higher and 0.15% or higher." Two comparison states were Ore-
gon (0.08%) and Washington. 

Before 0.08% Law 	 After 0.08% Law 

Fatally Injured 	 Drivers at 0.08% Fatally Injured Drivers at 0.08% 
Drivers 	 or Higher 	 Drivers 	 or Higher 

Oregon (0.08%) 1275 4455 1023 4186 
Washington 1735 6184 1582 5390 

NOTE: These data were extrapolated and based on the study by Hingson, Hereen, and 
Winter (1996). 

a. First, calculate a proportion for each state, before and after the 0.08% law went 
into effect. You will calculate a total of 4 proportions. 

b. Following the procedure explained in Section 11.5, including Example 3, cal-
culate a test of significance for the difference before and after the new law for 
Oregon and then do the same for Washington. 

c. Are your results significant for either state? Explain the importance of your 
findings. Remember that Oregon changed to 0.08% and Washington did not. 
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Chapter Outline 

12.1 Rationale for the Chi-Square Test 
Introduces the chi-square test as the appropriate tool for working 
with frequency or qualitative data 

12.2 The Basics of a Chi-Square Test 
Shows why the chi-square test is a popular way of testing the dif-
ference between observed and expected frequencies 

12.3 Types of Chi-Square Tests 
Lists three types of chi-square tests 

12.4 Test of Independence Between Two Variables 
Illustrates the first type of chi-square test with an example regard- 
ing associations between smoking and drinking during pregnancy 

12.5 Test of Homogeneity 
Illustrates the second type of chi-square test with an example from 
the Loma Linda Fetal Alcohol Syndrome Study 

12.6 Test of Significance of the Difference Between Two 
Proportions 
Uses the controversy over the use of vitamin C to prevent the com-
mon cold to illustrate the third type of chi-square test 

12.7 Two-by-Two Contingency Tables 
Gives an equation that directly provides a chi-square value for ta-
bles with 1 df 

12.8 McNemar's Test for Correlated Proportions 
Presents a chi-square test for matched or nonindependent samples 

12.9 Measures of Strength of Association 
Describes two measures of the strength of association—relative risk 
and the odds ratio 

12.10 Limitations in the Use of Chi-Square 
Explains how certain constraints can prevent the misapplication of 
chi-square tests 

175 
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Learning Objectives 

After studying this chapter, you should be able to 

1. Indicate the kinds of data and circumstances that call for a chi-square test 

2. Compute the expected value for a chi-square contingency table 

3. Compute a chi-square statistic and its appropriate degrees of freedom 

4. Explain the meaning of degrees of freedom 

5. Indicate the type of hypothesis that can be tested with chi-square 

6. Find the critical region for a chi-square test 

7. Compute two different measures of the strength of association of factors reported in 

2 x 2 tables 

12.1 	 RATIONALE FOR THE CHI-SQUARE TEST 

Although the t test is popular and widely used, it may not be appropriate for 
certain health science problems that call for tests of significance. Because the t 

test requires data that are quantitative, it is simply not applicable to qualitative 
data. In other chapters, whenever means or standard deviations were com-
puted, we worked with measurement data. With such data, we were able to 
record a specific value for each observation. These represented quantitative 
variables such as height, weight, and cholesterol level. But we are often obliged 
to classify persons into such categories as male or female, hypertensive or nor-
motensive, and smoker or nonsmoker, and to count the number of observations 
falling in each category. The result is frequency data. In addition, we often have 

to deal with enumeration data, because we enumerate the number of persons 

in each category; categorical data, because we count the number of persons 
falling into each category; and, as mentioned earlier, qualitative data, because 

we group the categories according to some quality of interest. 
Categorical data are not used to quantify blood pressure levels, for example, 

but rather to classify persons as hypertensive or normotensive. The classifica-
tion table used to do this is called a contingency table. Its use, though, does not 
permit us to determine whether there is a relationship between two variables by 
means of a correlation coefficient, because we do not have quantitative x and y 
observations for each person. Instead, we could perform a chi-square test to de-
termine whether there is some association between the two variables. This 
chapter considers various chi-square tests to deal with such a case and related 
ones for frequency data. 

12.2 THE BASICS OF A CHI-SQUARE TEST 

For a given phenomenon, the chi-square test compares the observed frequen- 

cies with the expected frequencies. The expected frequency is calculated from 
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some hypothesis. To illustrate, let us take the simple example of trying to deter-
mine whether a coin is fair. 

Suppose you toss a coin 100 times and you observe that heads (H) come up 
40 times and tails (T) 60 times. If you hypothesize that the coin is fair, you would 
expect heads and tails to occur equally—that is, 50 times each. In comparing the 
observed frequency (0) with the expected frequency (E), you need to determine 
whether the deviations (0 – E) are significant. As you can see in Table 12.1, if 
you were to sum the deviations, the total would equal zero, as indicated in 
column 3. 

To avoid this problem, you might first square each deviation, as in column 4. 
This approach has a problem, too: The same value is obtained for equal devia-
tions regardless of magnitude. For instance, consider 0 – E for two possibili-
ties: 60 – 50 = 10 and 510 – 500 = 10. Arithmetically, the deviations are iden-
tical, but they are far from identical in meaning; although a deviation of 10 from 
an expected 50 is impressive, the same deviation from an expected 500 is hardly 
noticeable. The best way of overcoming this problem is to look at the propor-
tional squared deviations, (0 – E)2/E. Here, the two possibilities become 
(60 – 50) 2/50 = 2.0 and (510 – 500) 2/500 = .02. Now the deviations offer a 
more meaningful statistical perspective. From column 5 of Table 12.1, we can 
see that for the coin problem, the sum of the proportional squared deviations is 
equal to 4. 

The next question is whether the value we have just calculated, 

(0 - 
E E 	 4  

can occur easily by chance or whether it is an unusual event that is unlikely to 
occur by chance except in rare instances, say less than 5% of the time. To resolve 
this question, we need to know how the quantity, designated as X2  (chi-square), 
is distributed; that is, we have to determine the probability distribution for the 
statistic 

2 

x2 -
_ E 	

E 
	 (12.1) 

Mathematical statisticians have shown that this quantity is approximated quite 
well by the chi-square distribution if the sample sizes and the expected num-
bers are not too small. This distribution is positively skewed, beginning at zero. 
By figuring out the area beyond 4 on a chi-square distribution, we can deter-
mine a p value and either accept or reject the hypothesis. 

There is, in fact, a family of chi-square distributions. The correct one to use 
depends, as in the t distribution, on a quantity called the degrees of freedom. 
For chi-square, degrees of freedom are determined as the number of independent 
deviations (each 0 – E) in the contingency table. A two-cell table (e.g., Table 
12.1) has 1 df. Wherever you can determine expected frequencies from your 
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Table 12. 1 Observed and Expected Frequencies and Their Deviations for 100 Tosses 

of a Coin 

(1) 	 (2) 	 (3) 	 (4) 	 (5) 

(0 -- L. 2  
0 	 E 	 0 - E 	 (0 - E) 2  

40 	 50 	 -10 	 100 	 2 

60 	 50 	 10 	 100 	 2 

100 	 100 	 0 	 200 	 4 
Total 

hypothesis, the degrees of freedom are one less than the number of categories. 
The coin problem has two categories, heads and tails, so there is 1 df. If you 
were trying to determine whether a six-sided die was unbiased, you would 
have 6 — 1 = 5 df. 

In Figure 12.1 you can see the shapes of several chi-square distributions. For 
each, the upper 5% of the area is shaded. Note that as the degrees of freedom in-
crease, so does the critical value needed to reject a null hypothesis. Intuitively, 
this sounds right: Because the degrees of freedom are proportional to the num-
ber of independent categories, you would well expect the critical chi-square 
value to increase with more categories. 

Probability 

.3 - 

1 df 

4 df 

x 2  value 

Figure 12.1 The Chi-Square Distribution for Varying Degrees of 

Freedom 
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Table 12.2 The Probability of Exceeding the Chi-Square Value in the 
Chi-Square Distribution 

a 

df .99 .95 .90 .50 .10 .05 .01 .001 

1 .00157 .00393 .0158 .455 2.706 3.841 6.635 10.827 
2 .0201 .103 .211 1.386 4.605 5.991 9.210 13.815 
3 .115 .352 .584 2.366 6.251 7.815 11.345 16.226 
4 .297 .711 1.064 3.357 7.779 9.488 13.277 18.467 
5 .554 1.145 1.610 4.351 9.236 11.070 15.806 20.515 

6 .872 1.635 2.204 5.348 10.645 12.592 16.812 22.457 
7 1.239 2.167 2.833 6.346 12.017 14.067 18.475 24.322 
8 1.646 2.733 3.490 7.344 13.362 15.507 20.090 26.125 
9 2.088 3.325 4.168 8.343 14.684 16.919 21.666 27.877 

10 2.558 3.940 4.865 9.342 15.987 18.307 23.209 29.588 

11 3.053 4.575 5.578 10.341 17.275 19.675 24.725 31.264 
12 3.571 5.226 6.304 11.340 18.549 21.026 26.217 32.909 
13 4.107 5.892 7.042 12.340 19.812 22.362 27.688 34.528 
14 4.660 6.571 7.790 13.339 21.064 23.685 29.141 36.123 
15 5.229 7.261 8.547 14.339 22.307 24.996 30.578 37.697 

20 8.260 10.581 12.443 19.337 28.412 31.410 37.566 43.315 
30 14.953 18.493 20.599 29.336 40.256 43.773 50.892 59.703 
40 22.164 26.509 29.051 39.335 51.805 55.759 63.691 73.402 
50 29.707 34.764 37.689 49.335 63.167 67.505 76.154 86.661 
60 37.485 43.188 46.459 59.335 74.397 79.082 88.379 99.607 

Table 12.2 gives the critical values for the chi-square distribution for various 
degrees of freedom. Here you can see that the upper 5% chi-square value for 1 
df is 3.84, for 4 df is 9.49, and for 6 df is 12.59. 

Back to our original question: "Is the coin fair?" Recall that the X 2  sum was 4. 
For 1 df, this falls within the upper 5% critical region. Therefore, you would re-
ject the Ho  that the coin is fair; that is, you would not expect to observe a devia-
tion as large as (or larger than) this to occur by chance alone. Your conclusion: 
The coin is probably unbalanced or loaded or was not properly thrown. A point 
to note is that the chi-square test, unlike some others, is a one-tailed test. The ra-
tionale for this is that we are almost always concerned only about whether the 
deviations are too large, seldom about whether they are too small. For example, 
we would worry about a dangerously high level of air pollution, but certainly 
not about too low a level. 

!.3 	 TYPES OF CHI-SQUARE TESTS 

In practical applications, you will often encounter problems involving two vari-
ables. Specifically, you may employ chi-square tests to determine 
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I. independence (if any) between the two variables 

2. Whether various subgroups are homogeneous 

3. Whether there is a significant difference in the proportions in the sub-
classes among the subgroups 

We will discuss each of these tests. 

12.4 TEST OF INDEPENDENCE BETWEEN TWO VARIABLES 

Kuzma and Kissinger (1981) published a study of the effects that maternal use 
of alcohol during pregnancy have on the newborn. Some of their data, regard-
ing smoking and drinking, are shown in Table 12.3. Here you can see that 30.5% 
of the nondrinking women and 67.3% of the heaviest drinkers smoked during 
their pregnancies. We might wonder whether drinking and smoking are depen-
dent variables and whether the relationship is explainable by chance. A way to 
approach this question is to test the null hypothesis that there is no relationship 
between smoking and drinking during pregnancy. To do this, we need to know 
the expected values before we can compute a X2  statistic. Expected values can 
be generated from the null hypothesis, which states there is no relationship be-
tween drinking and smoking during pregnancy. 

For purposes of this discussion, we set up a special notation, in which the 
eight cells of Table 12.3 are identified as E ll , . . . , E24, as shown in Table 12.4. The 

Table 12.3 Number and Percentages (in parentheses) of 11,127 Pregnant Women by 

Alcohol and Drinking Status 

Alcohol Consumption 
Smoking 

Status None Low Medium High Total 

Smokers 1,880 (30.5%) 2,048 (45.7%) 194 (53.0%) 76 (67.3%) 4,198 (37.7%) 

Nonsmokers 4,290 (69.5%) 2,430 (54.3%) 172 (47.0%) 37 (32.7/.) 6,929 (62.3%) 

Total 6,170 (55.5%) 4,478 (40.2%) 366 (3.3%) 113(1.0%) 11,127(100.0%) 

Table 12.4 Notation for Expected Frequencies of a Two -Variable Table 

Alcohol Consumption 

Smoking Status 	 None 	 Low 	 Medium 	 High 	 Total 

Smokers 	 E ll 	 E l2 	 El3 	 EN 

Nonsmokers 	 E21 	 E22 	 E23 	 E, 

Total 	 T„,, 	 Thi 	 T„d 	 T,„, 
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probability multiplication rule states that the probability of two independent 
events A and B is P(A and B) = P(A)P(B). 

We are testing the hypothesis that the two variables are independent. There-
fore we can apply the multiplication rule to obtain the frequencies expected if 
the hypothesis of independence is indeed true; that is, from the data in 
Table 12.4, the probability of a woman's being in the smoking group (A) and in 
the nondrinking group (B) is 

4198 V 6170 \ 
P(A)P(B) = = (.377)(.555) = .2092 

11,127)11,127/ 

(T„d n 
T) T 

where T, = total smokers and T„d  = total nondrinkers. Therefore the expected 
number of smokers who are also nondrinkers is 

E ll  = 11,127(.2092) = 2327.8 

The meaning of E ll  is what you would expect, assuming the null hypothesis to 
be true—that 2328 of the smokers will be nondrinkers. Continuing in the same 
way, we can obtain expected frequencies for all cells: for low, medium, and high 
alcohol consumption and for the nonsmoking categories. Thus 

E12 = (37720.4024011,127) = 1689.4 

E 13  = (.37728)(.03289)(11,127) = 138.1 

E24 = (.62272)(.010155)(11,127) = 70.4 

Although it may seem absurd to compute expected values to a fraction of a 
person, this is often done in order to avoid roundoff error and ensure that "ex-
pected" and "observed" row totals are identical. All expected frequencies are 
shown in Table 12.5. Now we can proceed to compute the X 2  statistic: 

Table 12.5 Observed and Expected Frequency of Alcohol Consumption and Smoking 
During Pregnancy for 11,127 Women 

Alcohol Consumption 

Smoking Status 

None Low Medium High 

0 E 0 E 0 E 0 

Smokers 
Nonsmokers 

Total 

1880 
4290 

2327.8 
3842.2 

2048 
2430 

1689.4 
2788.5 

194 
172 

366 

138.1 
227.9 

76 
37 

113 

42.7 
70.4 

6170 4478 
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(0 – E)2 	 (1880 – 2327.8) 2 (2048 – 1689.4) 2  
X 2  = E 	 E 	 2327.8 	

+ 	 1689.4 

+ 
(194 – 138.1)2 + (76 – 42.7)2 + (4290 – 3842.2) 2  

138.1 	 42.7 	 3842.2 

(2430 – 2788.5) 2 	 (172 – 227.9) 2 	 (37 	 70.4) 2  
+ 	 + 	 + 	

– 	
= 338.7 

2788.5 	 227.9 	 70.4 

Is a x2  of 338.7 significant? To find out, we check Table 12.2 for the critical 
value. But first, we need to know the number of degrees of freedom. In the case 
of our example, where we do not know the expected frequencies a priori (i.e., 
by deductive reasoning) but have obtained them from the data, the degrees of 
freedom are equal to (c – 1)(r – 1), where c is the number of columns and r 
the number of rows. Here we have 4 columns and 2 rows; therefore, df = 
(4 – 1)(2 – 1) = 3. 

From Table 12.2 we find the critical 5% value for 3 df to be 7.8. Because the 
computed A/ 2  of 338.7 falls well into the critical region, we reject the hypothesis 
of independence between drinking and smoking during pregnancy. This sug-
gests that there is an association between smoking and drinking among preg-
nant women. 

The preceding discussion should help you understand the meaning of de-
grees of freedom. Please note that the expected values for each category add up 
to the total observed value for that category. Note also that we could have com-
puted expected values for only three of the eight cells, with the others obtained 
by subtraction. These three cells represent the three "independent" quantities— 
that is, the 3 df. The other five quantities are not "independent" because they 
can be obtained by subtracting the first three from column or row totals. 

12.5 TEST OF HOMOGENEITY 

It is often important to determine whether the distribution of a particular char-
acteristic is similar for various groups. To do this, we can perform a chi-square 
test called a test of homogeneity. 

n EXAMPLE 1 

From the alcohol–pregnancy study of Kuzma and Kissinger (1981), we have 
data on the distribution of drinkers by ethnic group. As shown in Table 12.6, 
among Caucasians, 51.2% were abstainers, 43.6% light drinkers, 3.9% medium 
drinkers, and 1.2% heavy drinkers. The percentage distribution is fairly similar 
among the ethnic groups, except that the Caucasian group includes fewer ab-
stainers and more drinkers in all categories. Is this difference real or no greater 
than would be expected by chance? That is, can we assume that groups of preg- 
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Table 12.6 Drinking Status During Pregnancy, by Ethnic Group 

Ethnicity 

Alcohol Consumption 

None 
Light 	 Medium 	 Heavy 

(<1.0 oz*) 	 (1.0-2.99 oz) 	 oz) Total 

11 /7 	 (N, 

Black 
Hispanic 
Caucasian 
Other 

Total 

411 
1,459 
3,732 

322 

60.4 
64.0 
51.2 
61.6 

253 
757 

3,179 
187 

	

37.2 	 12 	 1.8 	 5 	 0.7 

	

33.2 	 53 	 2.3 	 10 	 0.4 

	

43.6 	 284 	 3.9 	 90 	 1.2 

	

35.8 	 10 	 1.9 	 4 	 0.8 

681 
2,279 
7,285 

523 

6.3 
21.2 
67.7 
4.9 

5,924 55.0 4,376 40.6 	 359 	 3.3 	 109 	 1.0 10,768 100.0 

*Equivalent ounces of absolute alcohol per day. 

nant women of various ethnicity tend to have essentially the same drinking 
patterns? 

To test for homogeneity, we again need to establish the expected frequencies, 
this time basing them on a somewhat different rationale than the probability 
argument used in Section 12.4. Nevertheless, the equations used to obtain ex-
pected frequencies are the same. For example, the expected number of abstain-
ers among Caucasian women is computed as 

E = 
5924  \ 1 7285 

10,768/ \ 10,768 
(10,768) = 4007.8 

The other expected frequencies are obtained similarly and are shown in 
parentheses in Table 12.7. Having the expected frequencies, we can now pro-
ceed with the test of significance as follows: 

1. Ho : The several ethnic groups are homogeneous in their drinking patterns. 
Hi : The several groups are not homogeneous in their drinking patterns. 

Table 12.7 Observed and Expected Frequencies of Alcohol Intake During 
Entire Pregnancy, by Ethnic Group 

Alcohol Consumption 

None Light Medium Heavy 

Ethnicity 0 E 0 E 0 	 E 0 E Total 

Black 411 (374.7) 253 (276.8) 12 (22.7) 5 (6.9) 681 
Hispanic 1,459 (1,253.8) 757 (926.2) 53 (76.0) 10 (23.1) 2,279 
Caucasian 3,732 (4,007.8) 3,179 (2,960.5) 284 (242.9) 90 (73.7) 7,285 
Other 322 (287.7) 187 (212.5) 10 (17.4) 4 (5.3) 523 

Total 5,924 4,376 359 109 10,768 

I 
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0 

Figure 12.2 Critical Region for Al 

16 92 

2. a = .05. 
3. Critical region: The critical region for x2  with (c — 1)(r — 1) = 

(4 — 1)(4 — 1) = 9 df (denoted as A/,) is shown in Figure 12.2 to be 16.9. 

4. Test statistic: 

x2 = E 
(o -

E 
E)2 

(411 — 374.7) 2 	 (253 — 276.8)2 
+ 	

+ (4 — 5.3)2  
•  

374.7 	 276.8 	 5.3 

= 146.3 

5. The computed )( 2  of 146.3 falls in the critical region, so we conclude that 
the deviations in drinking patterns among the various ethnic groups are 
not homogeneous; that is, the various ethnic groups do not appear to be 
homogeneous in their drinking patterns. n 

12.6 	 TEST OF SIGNIFICANCE OF THE DIFFERENCE 
BETWEEN TWO PROPORTIONS 

Another application of the chi-square test is in learning whether the proportion 
of successes in a treated group differs significantly from the proportion in a con-
trol group. It can be considered an alternative to the Z test for a 2 x 2 table. 

n EXAMPLE 2 

For some years there has been a lively medical controversy over the efficacy of 
vitamin C in preventing the common cold. Several studies concluded that vita-
min C was no more effective than a placebo. In Table 12.8, which presents some 
unpublished data from one such study, we find that 63% of the children treated 
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Table 12.8 Number and Frequencies of Children Developing Colds, by Vitamin C and 
Placebo Groups 

Status Vitamin C Group Placebo Group Total 

Children free of colds 21 (37%) 11 (24%) 32 
Children developing colds 36 (63%) 35 (76%) 71 

Total 57 (100%) 46 (100%) ii = 103 

with vitamin C and 76% of the placebo group caught colds. Does the number 
developing colds differ between the two groups? 

The expected frequencies for Table 12.8 are 

(32)(57) 
E11  =- 103 = 17.7 

By subtraction, the remaining expected frequencies are E12  = 14.3, E 21  = 39.3, 
and E2, = 31.7. The value of the test statistic is 

2 	 (0 
X E 

(21 — 17.7)2 	 (11  — 14.3)2 	 (36 — 39.3)2 	 (35 —  31.7) 2  
17.7 	 14.3 	 39.3 	 31.7 

= .61 + .76 + .28 + .34 

= 1.99 

As before, there are (c — 1)(r — 1) df. In this example, (c — 1)(r — 1) = 1. The 
critical A/2  at the 5% level for 1 df is 3.84. 

The resulting X2  of 1.99 is not within the critical region; therefore we fail to re-
ject the hypothesis that the percentage with colds in both groups is the same. So 
we could logically conclude that, for this size sample, the observed difference of 
children free of colds between 37% — 24% = 13% could well have occurred by 
chance. n 

t.7 TWO-BY-TWO CONTINGENCY TABLES 

Perhaps the most common chi-square analysis used in health research involves 
data presented in a 2 x 2 (fourfold) table in which there are two groups and two 
possible responses. Table 12.9 is a generalized representation of such a table. 
The observed frequencies are represented symbolically by the letters a, b, c, 
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Table 12.9 Schematic Representation for 2 x 2 Contingency Table 

Response 	 Treatment 	 Control 	 Total 

Yes 	 a 	 b 	 a + 
No 	 c 	 d 	 c + d 

a + c 
	

b + d 	 a+ b+c+d=11 

and d. With such data, it is possible to compute the X2  statistic directly, avoiding 
the need to compute expected frequencies: 

2 	 n(ad — bc) 2  
X - 	  (a + c)(b + d)(a + b)(c + 

(12.2) 

Thus, using the data on vitamin C in Example 2, we obtain the same result as 
in that example: 

	

0, 	 1 3[(21)(35) —  (11)(36)] 2  
= 

	

(57)(46)(32)(71) 	
= 1.99 

The equations we use to compute X2  result in approximations to the chi- 
square distribution. They are quite close for many degrees of freedom, not too 
close for a few, and not as good for 1 df. Just as we always use discrete observa-
tions to approximate a statistic that is continuously distributed, it is desirable to 
apply a correction for this. A frequently used solution is the Yates continuity 
correction for chi-squares with 1 df. However, Grizzle (1967) has shown that, 
because the correction is too conservative in that it leads too often to nonrejec-
tion of the null hypothesis, many practicing statisticians do not recommend 
its use. 

n EXAMPLE 3 

A survey on the use of seat belts found that 24 out of 60 males with a high school 
education and 30 out of 40 college graduates wore seat belts regularly. Is there 
evidence suggesting an association between education and seat belt use? Table 
12.10 presents the data in a 2 x 2 contingency table. 

Using equation 12.2 to compute the X 2, we have 

	

2 	 n(ad — bc) 2  
X - 

(a + c)(b + d)(a + b)(c + 

100[(24)(10) — (36)(30)] 2 
 (54)(46)(60)(40) 

= 11.8 
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Table 12.10 A 2 x 2 Contingency Table of Seat Belt Use and 
Education of a Sample of 100 Men 

Education 

Used Seat Belt 

Yes No Total 

High School Graduate 24 36 60 
College Graduate 30 10 40 

Total 54 46 100 

Because the computed x2  of 11.8 is larger than the critical x 2  of 3.84, with 1 df, 
we would reject the Ho  of independence; that is, we would suspect that there is 
an association between education and seat belt use. n 

For those who insist on the use of the Yates correction, which was proposed 
by Yates in 1934, to subtract one-half of the total number of observations from 
the absolute value of ad – bc, we illustrate it with the data from this example. 

n(1 ad – bc – .5n)2  
X(corrected) 	 (a + c)(b + d)(a + b)(c + d) 

100(124 x 10 – 36 x 301 – .5 X 100)2 
 54 x 46 x 60 x 40 

62,410,000 
5,961,600 

= 10.5 

As you can see, the difference between the two results is not important. 

2.8 McNEMAR'S TEST FOR CORRELATED PROPORTIONS 

The chi-square test we just considered tests the hypothesis that the proportions 
estimated from two independent samples are equal. In this section we present a 
chi-square test for the situation when samples are matched—that is, they are 
not independent. Investigators frequently use a before-and-after design in 
which they are trying to test whether there has been a significant change be-
tween the before-and-after situations. The features of such a design are illus-
trated with an example of data on seat belt use before and after a driver was in-
volved in an auto accident. This design, with the data, is shown in Table 12.11. 

The appropriate test statistic to use to test the H o  that there is no change in 
seat belt use from the period before the accident occurred to that after the acci-
dent occurred is McNemar's chi-square test: 
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Table 12.11 A 2 x 2 Table of Seat Belt Use Before and 

After Involvement in an Auto Accident for a Sample of 
100 Accident Victims 

Wore seat belt regularly 
after the accident 

Yes 	 No 

Wore seat belt 	 Yes 
regularly before 
the accident 	 No 

a = 60 b = 6 66 

34 c = 19 d = 15 

Total 79 	 21 100 

(b — c) 2  
X -  = b + c 

Using the data from Table 12.11, we find that the test shows: 

x2 	 (6 — 19) 2 	 169 
6.76 

6 + 19 	 25 

Because the computed X2  = 6.76 is larger than the critical value, X2  = 3.84, for 
a = .05 with 1 df, we reject the H o  of no change and conclude that there is a pos-
sible increase in seat belt use after involvement in an auto accident. Note that 
we use only the drivers who have changed in their seat belt use (b and c) in 
computing McNemar's test. 

12.9 MEASURES OF STRENGTH OF ASSOCIATION 

A popular measure of the strength of an association between two variables is 
relative risk (RR). Relative risk is widely used in research by clinicians and epi-
demiologists, largely because it is easy to calculate and interpret. 

Relative risk is defined as the ratio of the incidence rate for persons exposed 
to a risk factor to the incidence rate for those not exposed to the risk factor: 

incidence rate among exposed 
Relative risk (RR) — incidence rate among unexposed 

Some also call it the risk ratio. We can use a generalized 2 x 2 table to represent 
frequencies for each of the four cells in a table (Table 12.12). Relative risk can be 
computed using equation 12.3: 

RR = 
a (a + 

ci(c + d)  
(12.3) 
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Table 12.12 A 2 x 2 Table for Measuring Relative Risk 

Risk Factor Disease Present Disease Absent Total 

Present a b a + b 
Absent c d c 	 d 

Another commonly used measure of strength of association is the odds ratio 
(OR). The odds ratio, sometimes called relative odds, receives wide use in case- 
control studies and is defined as the ratio of alb to c/d. Although OR is not 
based on disease rates, it is a valid measure of strength of association. 

n EXAMPLE 4 

In a group of retirees, a community health survey revealed the relationship 
shown in Table 12.13 between smoking and presence of heart disease. Using the 
notation of Table 12.12, the relative risk (RR) of developing heart disease is 

a /(a + b) 	 25 /35 
RR = 	 = 	 = 3.3 

c 	 + 	 14„'65 

Based on the results of this survey, smokers have approximately 3.3 times the 
risk of developing heart disease as nonsmokers. n 

Table 12.13 A 2 x 2 Table of Smoking History and Heart 
Disease 

Risk 
	 Heart Disease 

Factor 	 Present 	 Absent 	 Total 

Smoker 25 10 35 
Nonsmoker 14 51 65 

Total 39 61 100 

n EXAMPLE 5 

In a controversial study of the relationship between coffee consumption and 
pancreatic cancer, MacMahon et al. (1981) interviewed 369 cancer patients and 
644 controls. Their findings, in part, showed that the patients were much more 
likely than the controls to have been heavy coffee drinkers. The data are shown 
in Table 12.14. 

The relative odds ratio is computed, using the data from Table 12.14, as 



Coffee Drinking 
(cups per day) 

Male 
Pancreatic Cancer 	 Male 

Patients 	 Controls 

a = 60 	 b 82 
c = 9 	 d — 3? 0 
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Table 12.14 A 2 x 2 Table for Measuring Relative Odds 

ad 	 (60)(32) 
OR = = 2.6 

bc 	 (82)(9) 

We would estimate from these results that habitual heavy coffee use increased 
the risk of pancreatic cancer in men by a factor of 2.6 relative to men who did 
not drink coffee. (This finding has still not been confirmed by other studies.) n 

We use relative risk when we have two binomial variables obtained from 
prospective (but not retrospective) studies. Relative risk is a highly useful con-
cept because it provides a quantitative measure relating a stimulus variable 
(e.g., coffee use) to an outcome variable (e.g., pancreatic cancer). 

A relative risk of 2.0 would indicate that heavy coffee use is associated with 
a twofold (100%) increase in the risk of pancreatic cancer, so coffee may be an 
important etiologic factor in that type of cancer. It is thus clear why relative risk 
is so popular. It serves as a quantitative measure of risk, a means of drawing in-
ferences of clinical significance, given the important provision that statistical 
significance has been established. 

12.10 LIMITATIONS IN THE USE OF CHI-SQUARE 

We previously mentioned that the techniques suggested in this chapter produce 
values that follow the continuous chi-square distribution. We use discrete data 
to approximate a continuous distribution. The closeness of the approximation 
also depends on the frequency size in the various cells of the contingency table. 
To ensure that the approximation is adequate, we follow a basic rule: The ex-
pected frequencies must not be too small. What is "small"? Its definition can 
vary by the type of chi-square test being performed. However, a general, well- 
accepted rule is that no expected frequency should be less than 1 and not more 
than 20% of the cells should have an expected frequency of less than 5. If a con-
tingency table violates this rule, a good technique is to merge ("collapse") some 
rows or columns to increase the frequencies of some of the cells. If the expected 
frequencies are too small, we should use Fisher's exact test, described later, in 
Section 14.7. 
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The chi-square test is very popular because it is easy to calculate. Also, it can 
be used with a wide variety of applications in the health and medical sciences. 
Sometimes, however, its frequency of use leads to misuse. A common misappli-
cation, for example, is to compute a x2  statistic for data that do not represent in-
dependent observations. This happens when one person is included more than 
once, when a before-and-after experiment is involved, or when multiple re-
sponses are recorded for the same person, as in measuring the frequency of de-
cayed or missing teeth. In the last case, there is obviously a lack of indepen-
dence, because adjacent teeth in someone's mouth are more likely to be affected 
than are teeth from different mouths. In such a case, independence would be en-
sured by counting the number of individuals and classifying them according to 
the number of decayed or missing teeth rather than by simply counting the 
number of teeth. 

If you suspect that your data are suffering from lack of independence, it 
would be wise to consult an advanced statistics textbook or obtain help from a 
statistician. Advanced statistics includes a variety of appropriate methods that 
can solve almost any problem. 

Conclusion 

Qualitative data may be analyzed by use of a chi-square test. The object of the 
test is to determine whether the difference between observed frequencies and 
those expected from a hypothesis are statistically significant. The test is per-
formed by comparing a computed test statistic, x2, with a one-tailed critical 
value found in a chi-square table. The critical value depends on the selected a 
and on the number of degrees of freedom, the latter reflecting the number of in-
dependent differences as computed from the data. The test statistic is computed 
as the sum of the ratios of squared differences to expected values. As in other 
tests of significance, if the computed test statistic exceeds the critical value, the 
null hypothesis is rejected. 

Vocabulary List 

a priori 
categorical data 
chi-square distribution 
chi-square test 
contingency table 
enumeration data 

expected frequency 
frequency data 
McNemar's chi-square 

test 
observed frequency 
odds ratio 

qualitative data 
relative risk 
Yates continuity 

correction 

Exercises 

12.1 	 From the Honolulu Heart Study data in Table 3.1, we can develop a number of 
chi-square tests of association between two factors. The contingency table for one 
such test is as follows: 
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Educational 
Level Smoker Nonsmoker Total 

None 4 16 -,i) 
Primary 15 17 32 
Intermediate 12 1 1  24 
Senior high 1 8 0 
Technical school 0 10 10 

Total 32 63 95 

a. Using a = .05, perform the test and determine whether there is an association 
between the two variables. 

b. Observe that the limitations of the test, as discussed in Section 12.10, were vi-
olated, thus invalidating the conclusion of a significant association. To correct 
the problem of small numbers, combine the senior high and technical school 
groups to make a 2 x 4 table and repeat the test. Does collapsing the groups 
change the conclusion? 

	

12.2 	 As in Exercise 12.1, use Table 3.1 as a source for contingency tables. Test them for 
associations between the two variables: 
a. Activity status (levels 1 and 2) and smoking status (smokers and nonsmok-

ers). Use a = .01. 
b. Activity status (levels 1 and 2) and systolic blood pressure (classify as less 

than 140 mmHg for group 1 and greater than or equal to 140 mmHg for 
group 2). Test at a = .05. (Hint: Use equation 12.2.) 

	

12.3 	 A study of diet and age at menarche yielded the following information: 

Age of 
Menarche 

Egg Consumption 

Never Once per Week 
2-4 Times 
per Week Daily 

Low 
Medium 
High 

5 
4 

11 

13 
20 
18 

8 
14 
15 

4 
0 
0 

a. Test, at a = .05, the hypothesis of independence of the two variables. (Hint: 
Use equation 12.1.) 

b. Because the expected values indicate a violation of the small numbers limita-
tion of the test, recompute by collapsing the two categories "2-4 times per 
week" and "daily" into a new category: "2-7 times per week." Does the result 
change your conclusion? 

12.4 	 Perform chi-square tests for significant difference between the two proportions 
for the following exercises: 
a. 11.5 
b. 11.10 
c. 11.11 



Exercises 	 193 

12.5 One of the variables considered in Heartbeat (a coronary risk reduction program) 
was age. An important question emerged: Was the age distribution of the partic-
ipants different from that of the population in the metropolitan statistical area 
(MSA) where Heartbeat was conducted? Perform a chi-square test to answer the 
question. Use the MSA population age distribution to compute the expected 
values. 

Age Interval 
Heartbeat 

Participants 
MSA 

Population (1970) 

25-34 18 140,195 
35-44 33 125,363 
45-54 54 120,826 
55-64 48 98,884 

65 and over 35 125,884 

Total 188 611,152 

12.6 a. How are degrees of freedom (df) computed for a chi-square 
What is the meaning of degree of freedom in the context 
table? 

c. What is a typical Ho  for a contingency table? 

12.7 a. What is the basis for computing the expected frequencies 
table? 

b. How are the expected frequencies computed? 

12.8 What circumstances call for the use of McNemar 's test rather 
test? 

table? 
of a contingency 

in a contingency 

than a typical X 2  

12.9 Compute the relative odds ratio (OR) for the data in Table 12.13 and interpret it. 

12.10 The following table presents data on 100 pregnant women and their smoking sta- 
tus before and after pregnancy. Determine whether there is a relationship be- 
tween pregnancy and smoking status. 

A 2 x 2 Table of Smoking Status Before and After Pregnancy 

Smoking Status 

Before Pregnancy 	 After Pregnancy 	 Total 

Smoker 	 Nonsmoker 
Nonsmoker 	 5 

	
55 
	

60 
Smoker 	 20 

	
20 
	

40 

Total 
	

25 	 75 
	

100 

12.11 A public health screening survey provided the following data on the relationship 
between smoking and lung cancer: 
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Smoking Status 

I.ung Cancer 

Present Absent Total 

Nonsmoker 1 6,700 6,701 
Smoker 20 3,279 3,299 

Total -n.  9,979 10,000 

Determine the strength of the association between smoking and lung cancer by 
computing the relative risk (RR) of a smoker's developing cancer. 

12.12 Prepare a contingency table for the data on allergies and geographic region given 
in Exercise 11.17. 
a. At the a = .01 level, determine whether there is an association between the 

rate of allergy complaints and geographic region. 
b. Compare the conclusions reached in (a) with the one from Exercise 11.17. Why 

are they the same or different? 

12.13 A survey of 100 men and 100 women revealed that 15 of the men and 36 of the 
women were more than 20% overweight. Prepare a contingency table and test 
the hypothesis that the two sex groups are homogeneous with respect to being 
overweight. (Use a = .05.) 

12.14 Prepare a contingency table for the data on gender and fitness given in Exercise 
11.18. 
a. Determine whether there is an association between gender and fitness at 

a = .05. 
b. Compare your conclusion with that reached in Exercise 11.18. 

12.15 Prepare a contingency table for the data on seat belt use and gender given in Ex-
ercise 11.15. 
a. Determine whether the proportion of seat belt users is the same for both sexes 

by performing the test of homogeneity. 
b. How do your conclusions differ from those reached in Exercise 11.15? 
c. Compute x 2, using both the equation requiring expected frequencies (equa-

tion 12.1) and the one that does not (equation 12.2). How do the results differ? 

12.16 A study was done to examine predictors of readiness to change smoking behav-
ior in a predominantly African American community. Barriers to quitting smok-
ing were examined for associations between races. One of the barriers examined 
was boredom. Residents in the community were asked whether boredom would 
he a problem, and therefore a barrier to quitting, should the respondent quit 
smoking. The respondents were divided into two groups—African Americans 
and whites/others—and the results are shown in the 2 x 2 table that follows. 
Based on these data, is there a relationship between race and boredom as a bar-
rier to quitting smoking? 



Police Called to 
Home 1 or More Times 	 No Police Calls Family Violence 

25 	 15 
6 	 22 

Alcoholic Family 
Nonalcoholic family 

Left Alone 	 Not Left Alone 
for Long Periods 	 for Long Periods Neglect 

5 	 35 
8 	 20 

Alcoholic Family 
Nonalcoholic Family 

Substance Abuse 

Alcoholic Family 
Nonalcoholic Family 

High 	 Low 

28 	 12 
13 	 15 
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Ethnicity 

Boredom Would Be a Problem 	 African American 	 White/Other 
If Stopped Smoking 	 N = 268 	 /V = 111 

Yes 	 75 	 51 
No 	 193 	 60 

NOTE: These data were extrapolated and based on the study by I. Tessaro et al. (1997). 

12.17 A study investigated the differences between incarcerated juveniles from alco-
holic families and those from nonalcoholic families. Three variables examined 
were substance abuse, family violence, and child neglect. The following three ta-
bles were compiled from the data obtained from incarcerated juveniles. Based on 
these three 2 x 2 tables, analyze the data. 

NOTE: These data were extrapolated and based on McGaha and Leoni (1995). 

12.18 A study investigated dietary differences between low income African American 
women and low income white women. One dietary practice examined was the 
consumption of mutagen-containing meats (defined as a serving of any meat that 
has been smoked, grilled, or fried). Based on the following table, is there any rea-
son to believe that there are differences between low income African American 
women and low income white women, with respect to their consumption of mu-
tagen-containing meats? 

Race 

Mutagen Containing Meats 

0-1 Servings 
per Day 

2-3 Servings 
per Day 

4 or more Servings 
per Day 

African American 
White 

68 
73 

36 
18 

11 
4 

NOTE: These data were extrapolated and based on Cox (1994). 
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12.19 A study was conducted to assess the relationship between syphilis and HIV in-
fection in injection drug users in the Bronx, New York. One part of the study ex-
amined the relationship between the incidence and prevalence of syphilis and 
whether or not the drug user was involved with "paid sex." A 2 x 2 table was 
developed as shown here. 

Syphilis Cases 

Paid Sex 	 Positive 	 Negative 

Yes 	 16 	 137 
No 	 19 	 618 

NOTE: These data were extrapolated and based on 
Gourevitch et al. (1996). 

a. Based on the data in this table, calculate the odds ratio. 
b. After calculating the odds ratio, explain the results. 



I 3 Correlation and Linear Regression 

Chapter Outline 

13.1 Relationship Between Two Variables 
Introduces the vexing problem of spurious relationships between 
variables 

13.2 Differences Between Correlation and Regression 
Explains why correlation and regression analysis, though kindred 
subjects, are used to answer different questions 

13.3 The Scatter Diagram 
Describes the starting point for plotting two variables 

13.4 The Correlation Coefficient 
Presents a convenient method to estimate the strength of a linear re-
lationship 

13.5 Tests of Hypotheses and Confidence Intervals 
for a Population Correlation Coefficient 
Illustrates how tests of significance of correlation coefficients can be 
performed like those of other statistics 

13.6 Limitations of the Correlation Coefficient 
Discusses the tendency to violate some limitations necessarily im-
posed on the correlation coefficient 

13.7 Regression Analysis 
Explains how to determine the algebraic expression that defines the 
regression line 

13.8 Inferences Regarding the Slope of the Regression Line 
Shows how confidence limits and tests of significance are readily ap-
plied to the regression coefficient 

Learning Objectives 

After studying this chapter, you should be able to 

1. Distinguish between the basic purposes of correlation analysis and regression 
analysis 

2. Plot a scatter diagram 

197 
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3. Compute and explain the meaning of a correlation coefficient in terms of 
a. the kind of data it may be used for 
b. the kind of relationship it can measure 
c. its limitations 

4. Compute and interpret a regression equation 

5. Perform a test of significance of a correlation coefficient and of a regression coeffi-
cient 

6. Find the confidence limits for p and 

13.1 	 RELATIONSHIP BETWEEN TWO VARIABLES 

Some of our most intriguing scientific questions deal with the relationship be-
tween two variables. Is there a relationship between underground nuclear ex-
plosions and the increased frequency of earthquakes? Does a relationship exist 
between use of oral contraceptives and the incidence of thromboembolism? 
What is the relationship of a mother's weight to her baby's birthweight? These 
are typical of countless questions we pose in seeking to understand the rela-
tionship between two variables. 

Whenever an unusual event occurs, people speculate as to its cause. There is 
an all-too-human tendency to attribute a cause-and-effect relationship to vari-
ables that might be related. Innumerable variables appear to be related to other 
variables but fail as plausible explanations of causal relationships. For instance, 
there is a significant association between a child's foot size and handwriting 
ability, but we would hesitate to claim that a large foot causes better handwrit-
ing. A more logical explanation is that foot size and handwriting ability both 
increase with age; thus the relationship is not causal but direct and age- 
dependent. As another example, one investigator reported a high degree of as-
sociation between increased washing machine sales and admissions to mental 
institutions. It would require a rather convoluted argument to demonstrate a 
causal relationship between these two variables. 

Spurious associations between variables have so perplexed scientists that 
one of them, Everett Edington of the California Department of Education, com-
posed a clever essay, "Evils of Pickle Eating" (Figure 13.1), in which he satirizes 
such relationships. To see how easily one might be deceived into believing that 
a cause-and-effect relationship, however ridiculous, exists, just exchange 
"milk," "candy," or "bread" for "pickle" in Edington's lampoon. 

How, then, can we demonstrate the existence of an actual causal relation-
ship? What statistical methods are available to measure the relationship be-
tween two variables? 

In previous chapters, we dealt exclusively with observations representing 
one variable. In this chapter, we consider the relationship of two variables, x 
and y, obtained for individuals or particular phenomena. Such pairs are re-
ferred to as bivariate data. We discuss the methods of measuring the relation- 
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Evils of Pickle Eating 

Pickles are associated with all the major diseases of the body. Eating them breeds 
war and Communism. They can be related to most airline tragedies. Auto acci-
dents are caused by pickles. There exists a positive relationship between crime 
waves and consumption of this fruit of the cucurbit family. For example .. . 

Nearly all sick people have eaten pickles. The effects are obviously cumulative. 

• 99.9% of all people who die from cancer have eaten pickles. 
• 100% of all soldiers have eaten pickles. 
• 96.8% of all Communist sympathizers have eaten pickles. 
• 99.7% of the people involved in air and auto accidents ate pickles within 14 

days preceding the accident. 
• 93.1% of juvenile delinquents come from homes where pickles are served 

frequently. Evidence points to the long-term effects of pickle eating. 
• Of the people born in 1839 who later dined on pickles, there has been a 100% 

mortality. 

All pickle eaters born between 1849 and 1859 have wrinkled skin, have lost 
most of their teeth, have brittle bones and failing eyesight--if the ills of pickle eat-
ing have not already caused their death. 

Even more convincing is the report of a noted team of medical specialists: rats 
force-fed with 20 pounds of pickles per day for 30 days developed bulging ab-
domens. Their appetites for WHOLESOME FOOD were destroyed. 

In spite of all the evidence, pickle growers and packers continue to spread their 
evil. More than 120,000 acres of fertile U.S. soil are devoted to growing pickles. 
Our per capita consumption is nearly four pounds. 

Eat orchid petal soup. Practically no one has as many problems from eating or-
chid petal soup as they do with eating pickles. 

EVERETT D. EDINGTON 

Figure 13.1 An Example of Spurious Associations Between Variables. SOURCE: "Evils of 
Pickle Eating," by Everett D. Edington, originally printed in Cyanograms. 

ships of bivariate data, determine the strength of the relationships, and make in-
ferences to the population from which the sample was drawn. 

3.2 	 DIFFERENCES BETWEEN CORRELATION 
AND REGRESSION 

The two most common methods used to describe the relationship between two 
quantitative variables (x and y) are linear correlation and linear regression. 
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The former is a statistic that measures the strength of a bivariate association; the 
latter is a prediction equation that estimates the value of y for any given x. 

When should you use correlation and when regression? Your choice depends 
on the questions raised and the kind of assumptions you make about the data. 
For example, you may address questions such as "Is there a relationship be-
tween IQ and grade-point average? Is there a relationship between the concen-
tration of fluoride in drinking water and the number of cavities in children's 
teeth?" Such questions are approached by means of the correlation coefficient, 
which is a measure of the strength of the relationship between the two vari-
ables, providing the relationship is linear. As we will see in Section 13.4, it is ap-
propriate to compute a correlation coefficient for such data because both x and 
y may be considered as random variables (i.e., variables that fluctuate in value 
according to their distribution). 

Certain conventions apply to bivariate data. Almost universally, x refers to 
the independent (or input) variable, because its outcome is independent of the 
other variable; and y refers to the dependent (or outcome) variable because its 
response is dependent on the other variable. Suppose you ask, "What change 
will occur in one's blood pressure after one reduces salt intake?" Here you 
would use the regression method, because you are interested in the degree of re-
lationship between two variables. Blood pressure would be represented by y, 
the dependent variable; salt intake by x, the independent variable. You can see 
from this example that the investigator may arbitrarily select the values of the 
independent variable and then observe the results of the experiment in terms of 
the dependent variable y for various levels of x. 

To further illustrate the methods of correlation and regression, let us suppose 
you are interested in studying the relationship of the prepregnancy weights of 
a group of mothers to their infants' birthweights. "How strong," you might ask, 
"is the association between the mother's weight and her infant's birthweight?" 
The method of choice is to calculate a correlation coefficent as a measure of the 
strength of association between these two variables. 

On the other hand, if you were to ask, "What would be an infant's predicted 
birthweight for a mother possessing a known prepregnancy weight?" you would 
employ linear regression analysis. 

13.3 THE SCATTER DIAGRAM 

An ever-popular graphical method used to display the relationship between 
two variables is the scatter diagram (or scattergram). The scatter diagram plots 
the value of each pair of bivariate observations (x, y) at the point of intersection, 
respectively, of the vertical line through the x value on the abscissa and of the 
horizontal line through the y value on the ordinate. For instance, let us use data 
from the Loma Linda Fetal Alcohol Syndrome study (Kuzma and Sokol, 1982), 
displayed in Table 13.1. We can make a scatter diagram of these data by plotting 

I 
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Table 13.1 Prepregnancy Weights of Mothers and Birthweights 
of Their Infants (Based on Sample Size 25) 

Case Number 
Mother's Weight 	 Infant's Birthweight 

(kg) 	 (g) 

1 49.4 3515 
2 63.5 3742 
3 68.0 3629 
4 52.2 2680 
5 54.4 3006 

6 70.3 4068 
7 50.8 3373 
8 73.9 4124 
9 65.8 3572 

10 54.4 3359 

11 73.5 3230 
12 59.0 3572 
13 61.2 3062 
14 52.2 3374 
15 63.1 2722 

16 65.8 3345 
17 61.2 3714 
18 55.8 2991 
19 61.2 4026 
20 56.7 2920 

21 63.5 4152 
22 59.0 2977 
23 49.9 2764 
24 65.8 2920 
25 43.1 2693 

SOURCE: Loma Linda Fetal Alcohol Syndrome study. 

on a graph each point corresponding to an (x, y) value (Figure 13.2). Take case 
13, for example. The mother's prepregnancy weight was 61.2 kg, and she deliv-
ered a baby weighing 3062 g. The point appears on Figure 13.2 where the lines 
for these values intersect. The diagonal line is called the regression line or, 
sometimes, the line of best fit. From this line, we expect women weighing 61.2 
kg (prepregnancy) to bear babies weighing about 3400 (precisely 3387) g. But 
we also expect random variation—and, of course, it happens. Case 13's baby 
weighed 3062 g, 325 g less than would be expected solely on the basis of the 
mother's weight. This difference is called the residual. We will further examine 
the subject of regression later. 

In examining the data of Figure 13.2, you will notice that there is some sort of 
a relationship between the mother's prepregnancy weight and the infant's 
birthweight. Although the relationship is subtle, mothers of low prepregnancy 
weight are seen generally to bear infants of low birthweights, whereas mothers 
of high prepregnancy weight generally bear heavier infants. Is the relationship 
linear? An easy way to tell is to examine its scatter diagram to see if the trend 
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Figure 13.2 Scatter Diagram of Infants' Birthweights Relative to Mothers' Prepregnancy 

Weights 

roughly follows a straight line. How strong is the relationship? To find out, you 
need to compute an appropriate statistic, such as the correlation coefficient. 

13.4 	 THE CORRELATION COEFFICIENT 

As we noted earlier, the sample correlation coefficient, r, is a measure of the 
strength of the linear association between two variables, x and y. The popula-
tion value is given by p (rho). The correlation coefficient is often referred to as 
Pearson's product-moment r. It has some unique characteristics: It may take on 
values between —1 and +1, and it is a pure number and nondimensional; that 
is, it has no units such as centimeters or kilograms. A correlation coefficient of 
zero represents no relationship between the variables. The closer the coefficient 
comes to either +1 or —1, the stronger is the relationship and the more nearly 
it approximates a straight line. A positive correlation implies a direct relation-
ship between the variables, and a negative correlation implies an inverse 
relationship. 

The sample correlation coefficient is defined by 

1 
1 

1 
1 

1 
1r 
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In computing, we more often use 

(Ix)(1]1f) 

S,S, 	 S,S v  

Figure 13.3 illustrates six quite different sets of data and how they are sum-
marized by r. Figure 13.3a illustrates the case of r = +1.0, a perfect positive cor-
relation in which all the points fall on a straight line. It is positive because the 
values of y increase with increases in x. Figure 13.3b is a perfect negative corre-
lation of r = —1.0. All the points again fall on a straight line, but as x increases, 
y decreases. 

In real life, there are always random variations in our observations; hence, a 
perfect linear relationship is extremely rare. Some examples of positive rela-
tionships are height and weight, IQ and grade-point average, cigarette con-
sumption and heart disease risk. A negative correlation would describe the 
relationship between the concentration of fluoride in drinking water and the 
prevalence of cavities in children's teeth. 

Although it is no longer 1.0, the correlation coefficient remains high when the 
points cluster fairly closely around a straight line (Figure 13.3c). The coefficient 
becomes smaller and smaller as the distribution of points clusters less closely 
around the line (Figure 13.3d), and it becomes virtually zero (no correlation be-
tween the variables) when the distribution approximates a circle (Figure 13.3e). 
Figure 13.3f illustrates one drawback of the correlation coefficient: It is ineffec-
tive for measuring a relationship that is not linear. In this case, we observe a 
neat curvilinear relationship whose linear correlation coefficient is quite low. 
This situation occurs because linear correlation tells its user how closely the re-
lationship follows a straight line. 

It is useful to know that the value of r does not change if the units of mea-
surement of a particular variable change. For example, the value of r remains 
the same whether the measurements are inches and pounds or centimeters and 
kilograms. Also, r2  provides an estimate of the proportion of the total variation 
in the variable y that is explained by the variation in the variable x. 

To illustrate the computation of a correlation coefficient, we can apply the 

r =  	 (13.2) 
[ 	 — (192  [ 	 - ( Y )2  

n 11 

Another formula, mathematically equivalent but easier to remember because it 
is defined in terms of the means and standard deviations of x and y and S x„, the 
sample covariance of x only, is 

/xy — niy/(n — 1) 	 S,„ 
r = (13.3) 
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data of Table 13.1. Using equation 13.2, we obtain 

(IX)(Ey) 

-490,728 
(142954)21 

 [284,266,104 	 8353°2 1 
25 

= .51615 

A correlation coefficient of .51615 seems to be of moderate magnitude. But to in-
terpret it, we need to answer two questions: What inferences can we make re-
garding its true value? Is the correlation statistically significant? 

Curvilinear Relationships 

If the scatter diagram indicates that the data do not fit a linear model then the 
relationship may be curvilinear, such as shown in Figure 13.3(f). It would not 
make much sense to try to fit a least squares line in such a situation. One possi-
ble solution would be fitting a linear regression to a transformed set of variables 
such as VY. If the error terms are smaller using V then we have gained some in 
keeping a simple straight-line model to explain the relationship. There are a 
number of different transformations that could be used such as y 2, or log y. 
The object is to obtain a better linear relationship than the original data. 
However, there are no precise ways to determine which transformation one 
should use. 

Coefficient of Determination 

A definition for r 2  = 1 — (SST), where SST represents the total sum of squares 
and SSE is the sum of squares (y — 0 2, which represents the overall variabil-
ity of the response variable y. 

We should note the following characteristics about r 2 : 

a. It is always between 0 and 1. At the extreme value of 0, the regression line 
is horizontal; that is, b i  = O. 

b. The closer r 2  is to 1, the "better" the regression line is in the sense that the 
residual sum of squares is much smaller than the total sum of squares. For 
this reason the r 2  is usually reported as an overall "figure of merit" for 
regression analysis. 

We can interpret r 2  as the fraction of the total variation in y (SST) that is ac-
counted for by the regression relationship between y and x. 



r - 0 
t = 	  

V(1 - 0:(] - 2) 
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13.5 TESTS OF HYPOTHESES AND CONFIDENCE INTERVALS 
FOR A POPULATION CORRELATION COEFFICIENT 

As you might expect, the correlation coefficient r is a simple value. It is an esti-
mate of the population correlation coefficient p in the same sense that x is an es-
timate of the population mean A. We are most often interested in drawing in-
ferences from a sample to the general population, so it is logical to perform a 
test of significance on the population correlation coefficient and estimate a con-
fidence interval for it. 

If you wish to test the null hypothesis that p = 0 (i.e., x and y are not linearly 
correlated) against the alternative hypothesis that p 0, you can use the 
following procedure. The only needed assumptions: the pairs of observations 
(x 1 , y 1 ), (x2, y2), ... , (x„, y„) must have been obtained randomly, and both x and 
y must be normally distributed. The test statistic to use is 

(13.4) 

with n - 2 df, where n is the number of paired observations. 
For our mother-child example, 

.51615 
t 	 , 	  

V [1 - (.51615) 2] (25 - 
= 2.89 

which (by reference to the t table) represents a correlation significantly (p < .01) 
different from zero. Our conclusion: There appears to be a positive association 
between a woman's prepregnancy weight and her infant's birthweight. Very 
often, in a journal article, the researchers will have performed multiple correla-
tions. The correlations will then be displayed in a table that is often referred to 
as a correlation matrix. Table 13.2 is an abbreviated version of an actual correla- 

Table 13.2 

Variable 1 2 3 4 5 6 7 	 8 

1 
2 
3 
4 
5 
6 
7 
8 

.07 

.27** 

.23** 

.03 
-.05 

.05 

.08* 

.16'f* 

.34** 
- .11** 
-.07 

.36** 
-.07 

.35** 

.33** 

.15** 

.11** 

.30** 

.16** 

.11** 

.16** 

.22** 

.32** 
-.22** 

.30** 
.03 
.12** -.19' 

N = 733 	 < .05 	 **p < .01 

NoTE: These data were copied and the table abbreviated from Windle and Windle (1996). 

I 
I 

I 
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tion matrix created by Windle and Windle (1996). The complete matrix included 
all possible correlations from 15 variables. The original matrix had a total of 105 
correlation coefficients! 

For each of the correlation coefficients, we have used a computer to compute 
a t test for significance. This matrix is a typical display of the correlation coeffi-
cients and asterisks to indicate which correlations are significant at .05 and .01. 

Notice in Table 13.2 that the correlation of variable 1 and variable 8 yields a 
correlation coefficient of .08. This correlation is significant at .05. Under just 
about any conceivable circumstance, .08 is a very low correlation, yet in this 
study was found to be significant. How is it possible that such a low correlation 
could be significant? The answer has to do with the sample size. When a sam-
ple is large (733 is a large sample), using equation 13.4 will almost always give 
you a significant correlation. Note what happens to the calculated t with a cor-
relation coefficient of .08 and an N of 733. 

.08 
t

= V1 - (.08) 2 /731 

The calculated t of 2.17, when compared to a critical t of ±1.97 (200 df from 
Table B) yields a statistically significant correlation. The inescapable conclusion 
is that you must be careful about interpreting the meaning of a significant cor-
relation when the sample size is large. 

Where did the t statistic of equation 13.4 come from? Mathematical statisti-
cians are able to make a comparatively simple derivation from other equations, 
as you will see in Section 13.8. 

Computing a confidence interval for p involves an equation much more com-
plex than the corresponding one for the population mean. In consequence, ta-
bles giving confidence intervals have been prepared for the convenience of the 
user. Figure 13.4 illustrates 95% confidence intervals for different sample sizes. 
Suppose you wanted to find the 95% confidence interval for the population cor-
relation coefficient p from the mother-child example (r = .52, n = 25). It is quite 
simple to do this by using Figure 13.4. Find the r of +.52 on the abscissa and 
sketch a vertical line through it. The points given by the intersection of that line 
and the intervals for 11 = 25 give the upper and lower 95% confidence limits. 
Use the curves that correspond to your sample size or visually interpolate. The 
limits are read on the ordinate, approximately +.10 and +.75. If we can safely 
assume that our data for the 25 mother-child pairs (Table 13.1) are a random 
sample of all the pairs in the study, then the 95% confidence interval for the true 
population p is indeed .10 to .75. Regardless of the true value of the population 
correlation coefficent, we can draw the inference, with 95% confidence, that it is 
captured by the range .10 -.75. Further, the test of the H 0 : p = 0 at the a = .01 
level indicates that p is significantly different from zero because zero falls below 
the interval .10 -.75. 
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Scale of r (= sample correlation coefficient) 
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13.6 	 LIMITATIONS OF THE CORRELATION COEFFICIENT 

As we mentioned, one limitation of the correlation coefficient is that, though it 
measures how closely the two variables approximate a straight line, it does not 

validly measure the strength of a nonlinear relationship. We also have to equiv-
ocate a bit as to the reliability of the correlation when n is small (say, fewer than 
about 50 pairs of observations). Further, it is always useful to plot a scattergram 
(e.g., Figure 13.2) to see if there are any outliers-that is, observations that 
clearly appear to be out of range of the other observations. Outliers have a 

-1.0 
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Scale of r (= sample correlation coefficient) 

Figure 13.4 Confidence Intervals for the Correlation Coefficient (1 - a = .95). SOURCE: 

Reprinted with permission from Handbook of Tables for Probability and Statistics, ed. William 

H. Beyer (Boca Raton, Fl.: CRC Press, 1966). Copyright CRC Press, Inc., Boca Raton, Fl. 
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marked effect on the correlation coefficient, often suggest erroneous data, and 
are likely to give misleading results. Perhaps the most important drawback of 
the correlation coefficient is that a high (or statistically significant) correlation 
can so easily be taken to imply a cause-and-effect relationship. Use caution: Do 
not take it as proof of such a relationship. 

With all these reservations, you may be puzzled as to how major decisions in 
public policy can be based on correlation analysis. For instance, in the Surgeon 
General's Report (U.S. Department of Health, Education, and Welfare, 1971), we 
see an important public document that includes a good deal of correlation 
analysis and concludes that smoking causes lung cancer. In reaching their con-
clusions, the Surgeon General's blue-ribbon panel of experts (which included 
leading statisticians) relied heavily on the consistency of the results of a large 
number of population and laboratory studies. In essence, their conclusion was 
based not on a single correlation coefficient, but on an overwhelming body of 
evidence: 

1. The death rate for cigarette smokers was about 70% higher than for non-
smokers. 

2. Death rates increased with increased smoking (Table 13.3). 

3. The death rates of heavy smokers were more than two times as large as 
those of light smokers. 

4. The mortality ratio of cigarette smokers to nonsmokers was substantially 
higher for those who started to smoke under age 20 than for those who 
started smoking after age 25. The mortality ratio increased with more 
years of smoking. 

5. The mortality of smokers who inhaled was higher than that of those who 
did not. 

6. Persons who stopped smoking had a mortality ratio 1.4 times that of per-
sons who never smoked, while current smokers had a ratio of 1.7. 

7. In prospective studies, it was found that for all causes of death, smokers 
experienced 70% greater mortality than nonsmokers, but for respiratory 

Table 13.3 Correlation Between Increased Smoking 
and Increased Death Rate 

Mortality Ratio 
	 Excess in Death Rate 

No. of 
	 of Smokers 	 of Smokers 

Cigarettes Smoked 
	

to Nonsmokers 
	 Over Nonsmokers 

<10 	 1.45 	 45'N, 
10-19 	 1.75 	 75% 
20-39 	 1.90 	 90% 

40 or more 	 2.20 	 120% 
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system causes the percent was even higher. For lung cancer, it was 
10 times higher; for bronchitis and emphysema, it was 6.1 times higher. 

13.7 	 REGRESSION ANALYSIS 

We are indebted to Sir Francis Galton for coining the term regression during his 
study of heredity laws. He observed that physical characteristics of children 
were correlated with those of their fathers. He noted particularly that the 
heights of sons were less extreme than those of their fathers. Specifically, he 
found that tall fathers tended to have shorter sons, whereas short fathers tended 
to have taller sons, a phenomenon he called "regression toward the mean." In 
plotting median heights of sons and fathers, he found that there was a positive 
association and that the relationship was roughly linear. 

Subsequently, statisticians used means, not medians, and embraced the term 
regression line to describe a linear relationship between two variables. The re-
gression line also indicates prediction of the value of a dependent (outcome) 
variable (y) from a known value of an independent variable (x), and the ex-
pected change in a dependent variable for a unit change in an independent vari-
able. For any two variables, there is a linear equation that best represents the re-
lationship between them. It is often useful to find an estimate of the true 
equation that describes the straight-line regression. Such an estimate is given by 

9 = + 	 (13.5) 

That is, the dependent variable 9 can be estimated in terms of a constant, a, plus 

another constant, b, times the independent variable x. Note the important dis-
tinction between 9, the predicted value (which falls on the regression line), and 
y, the observed value that usually does not fall on the line. The constants a and 

b are estimates of the two parameters of the true regression equation that define 
the location of the line. Their specific meaning is illustrated in Figure 13.5. The 
constant a represents the value of y when x = 0, while b is the slope (or gradient) 

of the line. The slope can be more precisely defined as the amount of change, Ay, 
in the dependent variable for a given change, Ax, in the independent variable. 
Thus, the slope, often referred to as the regression coefficient, gives a good in-
dication of the relationship between variables x and y. 

Equation 13.5 is an estimate of the following equation, which describes the 
population regression of y on x: 

y = Po + Pix + 6  

where [3 0  is the y-axis intercept and corresponds to a of equation 13.5; 0 1  is the 
slope of the population regression line and corresponds to b of equation 13.5; 
and e is the error in the observed value of y for a specified value of x. The error, 
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A 
y = a + bx 

Ay 

b = 	 = slope  
Ax 

a = y = axis 
intercept 

0 x 

Figure 13.5 Equation of a Straight Line 

the residual, is estimated by y — 9, the difference between the observed and the 
predicted value. 

Certainly, you would strive to solve regression problems with some equation 
that provides the "best fit" to the data. But how would you do this? There is a 
mathematical procedure that minimizes the estimated error (y — 9). It is known 
as the least-squares method. This procedure uses equations that estimate /3 0 

 and p i  by the following equations for a and b. The equation for estimating 0 1  is 

= b = 1(x 	 )(Y Y)  r sv 
1(x — -42 	 'Y sx  (13.6) 

and the equation for estimating /3 0  is 

ie0  =a=y—bx 	 (13.7) 

Again using our data on mothers' and infants' weights (Table 13.1), we can now 
compute the slope. For convenience, we use the mathematically identical com-
putation equations: 

Exy — [(Ex)(Ly)] n 
b = 

Ex-  — R14'1 n 

5,036,414.1 — (1,493.7)(83,530)/25 
(13.8) 

90,728.45 — (1,493.7) 2 / 25 
= 30.794 
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and 

a = y – bx = 3341.2 – 30.794 (59.748) = 1501.32 	 (13.9) 

Now that we know the values of the two constants, we can write the equa-
tion for the best-fitting line of regression: 

9 = 1501.32 + 30.794x 

Symbolically, y is the predicted value for a given value of x. It is actually the es-
timated mean of all y's that could be observed for a specific value of x. 

To illustrate further: Women with a prepregnancy weight of 70.3 kg would be 
expected from the preceding equation to bear infants weighing an average of 
3666 g. But case 6, a subject who weighed 70.3 kg, bore a baby weighing 4068 g. 
The difference, y – 9 = 4068 – 3666 = 402 g, represents the deviation, or resid-
ual, of the observed value from the value predicted by the least-squares regres-
sion line. The residuals are shown as the vertical lines in Figure 13.6. 

The regression line always passes through the means of x and y—that is, 
through (x = x, y = y). Hence, it is simple to superimpose it on the scattergram. 
A characteristic of a least-squares regression line is that the sum of the devia- 

2200 

A 	 

	

V 	
42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 

Mother's prepregnancy weight (kg) 

Figure 13.6 Deviations About the Linear Regression Line for Infants' Birthweights Relative 
to Mothers' Prepregnancy Weights 
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tions about the line is equal to zero, and the sum of the squared deviations is a 
minimum; that is, there is no other line for which it could be less. That is why it 
is referred to as the line of best fit in the sense of "least squares." Table 13.4 helps 
verify this. It shows that the sum of the residuals above the regression line 
equals the sum of those below the line; that is, I'(y – = 0 or actually 0.14, 
which is a tiny roundoff error. 

An indication of just how precisely the regression line describes the relation-
ship between x and y is the variance of the deviations (y – 9) about the line. 
This variance is denoted s 2„ „. It is an estimate of the true error of prediction emu . ,.. 
Underlying this estimate is an assumption of homogeneity—namely, that a-2 , 
remains constant for all y's distributed about each x along the regression line. 

The last column of Table 13.4 is used to compute s 2,/  „ the equation being 

s 
1(y  9)2 

n – 2 (13.10) 

where n – 2 represents the degrees of freedom. From Table 13.4, we compute 
s 	 as 3,769,490.7/23 = 163,890.9. Alternatively, the same variance can be y 

obtained directly without computing predicted values (9) by substituting 
a + bx for y, which gives 

1(y – a – bx)2  
S 2 = 

y-x 	 n – 2 

After some algebraic manipulations this can be rewritten as 

Iy2  – aEy – bExy 
s 2 = yx 	 n – 2 (13.12) 

The square root of s2  is referred to as the standard error of estimate. Once you 
have obtained the equation for a linear regression line, you would probably like 
to know how reliable the line is for predicting dependent variables. To find out, 
you need to use the standard error of estimate in a test of significance or obtain 
confidence intervals for p i , the slope of the population regression line. 

.8 	 INFERENCES REGARDING THE SLOPE 
OF THE REGRESSION LINE 

Thus far we have assumed that (1) the means of each distribution of y's for a 
given x fall on a straight line, and (2) the variances, u2, „, are homogeneous for 
each distribution of y's for a given x. To perform tests of significance or com-
pute confidence intervals, we will need one more assumption: The distribution 
of y's is normal for each value of x. 
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We noted earlier that the slope, b, computed from sample data is an estimate 
of some true value, 0 1 , for the population regression line, which is defined by 

y 0 0  + 0 1 x + 	 (13.13) 

We now wish to determine (1) how useful the regression line obtained from 
sample data is in predicting the outcome variable, and (2) whether the slope b 
differs significantly from 0 1  = O. To do this, we need to perform a hypothesis 
test for 0 much as we did for ,u. The first step is to compute the standard error 
of b. Mathematical statisticians have shown that 

.  
SE(b) = 	

Sy 
 2 
x 

 

E(X 

which simplifies to 

SE(b) = 	
s 
	 x 

sxVn  — 1 

(13.14) 

which for our data on mothers' weights and infants' birthweights (Table 13.4) 
computes to 

V163,890.9 	 404.834 
SE(b) =  	 = 10.512 

V90,728.45 — 1493.72 /25 	 38.51 

Using this value, we can now perform the following hypothesis test: 

1. Ho: /3 1  = 0 (slope of 0 means that there appears to be no relationship be-
tween x and y) versus Hi : f3 1  O. 

2. a = .05. 
3. The test statistic (with n — 2 df) is 

b — 0 
t = 

SE(b)  

30.794 (13.15)  
10.512   

= 2.93   

4. The critical region for t with 23 df for a = .05 is t = 2.07. 
5. We reject Ho  because a t of 2.93 falls in the critical region.  
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6. We conclude that the slope differs significantly from 0; consequently, a re-
gression line estimated from our data can, with reasonable reliability, pre-
dict dependent variables for given values of x. 

From the test statistic for the regression coefficient b, it is a simple matter to 
describe the confidence interval for the true regression coefficient 01: 

CI for /3 1  = b ± t[SE(b)] 	 (13.16) 

again based on n — 2 df. 
The confidence interval corresponds to the central (1 — a) proportion of the 

area. Assuming only that our data for 25 mother—infant pairs is a random sam-
ple of all such pairs, the 95% confidence interval for 0,, the true slope, is 

CI = 30.794 ± 2.07(10.512) 

= 30.794 ± 21.760 

= 9.03 to 52.55 

Therefore, we can say (with 95% confidence) that 13 1  is unlikely to be less than 
9.03 or larger than 52.56. 

We can show that the t statistics of equation 13.4 can be derived from testing 
the null hypothesis that /3, the slope of the line of regression, is zero. The equa-
tion to use is 

b 
t = 

SE(b) 

where b represents a sample estimate of /3. 
Testing whether 0 equals zero is functionally equivalent to testing for p 

equals zero. For further details, see Armitage (1971). 

Conclusion 

Correlation analysis and regression analysis have different purposes. The for-
mer is used to determine whether a relationship exists between two variables 
and how strong that relationship is. The latter is used to determine the equation 
that describes the relationship and to predict the value of y for a given x. An aid 
to visualizing these concepts is the scatter diagram. 

A correlation coefficient (r) can take on values from —1 to +1. The closer r ap-
proaches —1 or +1, the stronger the linear relationship between x and y; the 
closer r approaches zero, the weaker the relationship. It is important to keep in 
mind that a high correlation merely indicates a strong association between the 
variables; it does not imply a cause-and-effect relationship. A correlation coeffi- 
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cient is valid only where a linear relationship exists between the variables. After 
computing the correlation coefficient r and the regression coefficient b, we are 
obliged to test their significance or set up confidence limits that encompass the 
population values they estimate. 

Vocabulary List 

bivariate data 
cause-and-effect 

relationship 
coefficient of 

determination 
confidence intervals 
correlation coefficient 
curvilinear regression 
dependent variable 

(outcome variable)  

independent variable 
(input variable) 

least-squares method 
linear correlation 
linear regression 
negative correlation 
outlier 
positive correlation 
prediction equation 
regression coefficient 

(slope, gradient)  

regression line (line of 
best fit) 

residual 
sample covariance 
scatter diagram 

(or scattergram) 
standard error of 

estimate 
y-axis intercept 

Exercises 

	

13.1 	 A correlation coefficient r consists of two parts: a sign and a numerical value. 
a. What is the range of values possible for r? 
b. What does the sign tell you about the relationship between variables x and y? 
c. What information do you derive from the value of r regarding x and y? 
d. What does r tell you about the ability of the regression line to predict values of 

y for given values of x? 
e. For any given set of data, would the correlation coefficient and the regression 

coefficient necessarily have the same sign? The same magnitude? 

	

13.2 	 For the data of Table 3.1 (Honolulu Heart Study), compute the correlation coeffi- 
cient for 
a. Blood glucose (x) and serum cholesterol (y), with Ex = 15,214; Ey = 21,696; 

X 2  = 2,611,160; >xy = 3,371,580; Ey' = 4,856,320. 
b. Ponderal index (x) and systolic blood pressure (y), with Ix = 13,010; 

Iy = 4,052; Ex2  = 1,736,990; Exy = 527,185; I y 2  = 164,521. What does this 
correlation coefficient tell you about the scatter diagram of systolic blood 
pressure versus ponderal index? 

13.3 In a study of systolic blood pressure (SBP) in relation to whole blood cadmium 
(Cd) and zinc (Zn) levels the following data were obtained: 

Cd (ppm/g ash) 68 63 56 48 96 70 66 45 50 60 53 47 36 65 

Zn (ppm/g ash) 127 118 78 76 181 134 122 87 80 107 116 103 64 123 

SBP (mmHg) 166 162 116 120 160 120 182 134 130 116 108 134 116 96 
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a. Make a scatter diagram of cadmium and systolic blood pressure, using the lat-
ter as the dependent variable. 

b. Judging from the diagram, would you be justified in using linear regression 
analysis to determine a line of best fit for cadmium and blood pressure? Why 
or why not? 

c. Compute the correlation coefficient for cadmium and blood pressure. 
d. Using zinc as the dependent variable, plot a scatter diagram of cadmium and 

zinc. 
e. Does the diagram of (d) provide justification for using regression analysis to 

determine a line of best fit? Why or why not? 
f. Calculate the equation of the line of best fit for the relationship between zinc 

and cadmium, and draw the line on the scatter diagram for (d). 
g. If it were determined that a patient had a whole blood cadmium level of 80, 

what would you expect that patient's zinc level to be? 
h. Would you be justified in stating that there is a cause-and-effect relationship 

between cadmium and zinc? Why or why not? 

13.4 	 Test the correlation coefficient you calculated in Exercise 13.2a to determine if it 
is significantly different from zero. 

13.5 a. Determine the 95% confidence limits for the population correlation coeffi-
cient p of cadmium and blood pressure for Exercise 13.3c. 

b. Test the hypothesis Ho: p = 0 by using the confidence interval you found in 
(a). 

13.6 To find the equation of the regression line in Exercise 13.3f, you had to calculate 
the regression coefficient p i . Perform a significance test of the null hypothesis 
that the population regression coefficient is not significantly different from zero. 

13.7 Calculate the equation of the regression line for the relationship between blood 
glucose (x) and serum cholesterol (y) for the summary data given in Exercise 
13.2a. Perform a test of significance of the Ho: p, = 0 at the a = .01 level. 

13.8 Calculate the equation of the regression line for the relationship between pon-
deral index (x) and systolic blood pressure (y) for the summary data given in Ex-
ercise 13.2b. Perform a test of significance of the Ho: 0 1  = 0 at the a = .05 level. 

13.9 What are the assumptions that one needs to make in 
a. testing Ho : p = 0 
b. testing Ho : f3 = 0 or computing the CI for ,6 

13.10 Give examples of variables that would be suitable for computing a 
a. correlation coefficient 
b. regression line 

13.11 What are the limitations of a correlation coefficient? 

13.12 What is the meaning of 
a. r 
b. r 2  
c. a and b in a regression line 
d. least-squares regression line 
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13.13 The following are data for 12 individuals' daily sodium intake and their systolic 
blood pressure readings. 

Person Sodium BP Person Sodium BP 

1 6.8 154 7 7.0 166 
2 7.0 167 8 7.5 195 
3 6.9 162 9 7.3 189 
4 7.2 175 10 7.1 186 
5 7.3 190 11 6.5 148 
6 7.0 158 12 6.4 140 

A research investigator is interested in learning how strong the association is be-
tween these variables and how well we can predict blood pressure from sodium 
intake. 
a. Compute r and test the Ho: p = 0 at the a = .05 level. 
b. Obtain the 95% CI for p. 

13.14 a. Calculate the regression equation for the data in Exercise 13.13. 
b. Test the Ho : 13 = 0 at the a = .01 level. 
c. What would be a likely blood pressure for a person with a sodium intake of 

6.3? of 7.6? 

13.15 Richard Doll, a British investigator of the relationship between smoking and 
lung cancer, compiled the following information on per capita cigarette con-
sumption in 1930 and lung cancer 20 years later (in 1950) for a number of coun-
tries, as shown below: 

Cigarette 
	 Deaths per 

Consumption 	 100,000 
Country 	 in 1930 

	
in 1950 

USA 1300 20 
Great Britain 1100 46 
Finland 1100 35 
Switzerland 510 25 
Canada 500 15 
Holland 490 24 
Australia 480 18 
Denmark 380 17 
Sweden 300 11 
Norway 250 9 
Iceland 230 6 

a. Construct a scatter diagram and describe the relationship between cigarette 
consumption in 1930 and lung cancer in 1950. 

b. Compute r and r 2  and describe what they mea n. 
c. Test the Ho  that there is no association between cigarette consumption and the 

subsequent development of lung cancer. 
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13.16 The American Heart Association has provided the following regression equa-
tions for computing a person's ideal weight (9) based on a person's height (x) in 
feet. For females it is given by 9 = 100 + 4.0x, and for males it is given by 9 
= 110 + 5.0x. Use the appropriate equation to determine your ideal weight and 

compare it with your actual weight to determine whether or not you are over- or 
underweight. 

13.17 You obtained a Pearson r of —1.04. What does this tell you about the relationship 
between the two variables correlated? 

13.18 You obtained a Pearson r of .45. How many pairs of subjects or scores must you 
have for this correlation to be considered significant? Assume that this is a one- 
tailed test. 

13.19 The correlation matrix from which Table 13.2 is derived actually had 105 correla-
tions from the 15 variables. If there were absolutely no significant correlations 
between any of the variables, at a .05 level of significance, how many correlations 
would you expect to be significant? (Hint: This is directly related to the possibil-
ity of a Type I or Type II error.) 

13.20 Which of these correlations is the strongest? the weakest? Explain. 
a. —.71 	 b. .08 	 c. .62 	 d. —.12 

13.21 You obtained the following correlation matrix: 

A. 1.00 .48 —.06 .87 
B. 1.00 .17 —.71 N = 32 

C. 1.00 —.40 
D. 1.00 

a. Which correlations are significant at .05? (two-tail) 
b. Which correlations are significant at .01? (two-tail) 

13.22 You obtained a Pearson r of .60. 
a. With an n of 25, 50, and 100, what are the confidence intervals? 
b. Why do the confidence intervals become narrower as the sample size in-

creases? 
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Chapter Outline 

14.1 Rationale for Nonparametric Methods 
Explains the reason for the increasing popularity of nonparametric 
methods 

14.2 Advantages and Disadvantages 
Weighs the advantages and disadvantages of nonparametric 
methods 

14.3 Wilcoxon Rank-Sum Test 
Presents a procedure that is similar to the t test for two independent 
samples 

14.4 Wilcoxon Signed-Rank Test 
Describes a procedure similar to the paired t test for two dependent 
samples 

14.5 Kruskal—Wallis One-Way ANOVA by Ranks 
Gives an alternative technique to the one-way ANOVA 

14.6 The Sign Test 
Discusses one of the simplest of statistical procedures 14.7   

Spearman Rank-Order Correlation Coefficient 
Discusses the Spearman correlation coefficient, used to describe the 
association of two ranked variables 

14.8 Fisher's Exact Test 
Presents a test to use when the frequencies are too small to use the x 2 

 test 
 

Learning Objectives 

After studying this chapter, you should be able to 

1. Distinguish between 
a. parametric and nonparametric methods 
b. rank-sum tests and signed-rank tests 
c. Pearson and Spearman correlation coefficients 

2. List the advantages and disadvantages of nonparametric methods 
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3. Give the equation for the sum of the first 11 integers 

4. List the assumptions necessary to perform hypotheses tests by nonpara metric 
methods 

5. Be able to apply the sign test to paired data 

6. Know when and how to use Fisher's exact test 

14.1 	 RATIONALE FOR NONPARAMETRIC METHODS 

In the preceding chapters we discussed several methods that enable us to de-
termine whether there is a significant difference between two sample means. 
The most popular of these involve the normal and the t distributions. We also 
learned about the correlation coefficient, which measures the amount of linear 
association between two variables. Underlying such test statistics were as-
sumptions of normality, homogeneity of variances, and linearity. Whenever we 
dealt with measurement data used in test statistics, we also were interested in 
obtaining some estimate of the population parameter—that is, ,u, or p. 

All these statistical techniques are collectively referred to as parametric 
methods. In contrast to these are the nonparametric methods, which have been 
developed for conditions in which the assumptions necessary for using para-
metric methods cannot be made. Nonparametric methods are sometimes re-
ferred to as distribution-free methods because it is not necessary to assume 
that the observations are normally distributed. A nonparametric method is ap-
propriate for dealing with data that are measured on a nominal or ordinal scale 
(discussed in Chapter 1) and whose distribution is unknown. Because of the 
many advantages of nonparametric methods, their use has been increasing 
rapidly. But, like most methods, they also have disadvantages. 

14.2 ADVANTAGES AND DISADVANTAGES 

Nonparametric methods have three main advantages: 

1. They do not have such restrictive assumptions as normality of the obser-
vations. In practice, data are often nonnormal or the sample size is not 
large enough to gain the benefit of the central limit theorem. At most, the 
distribution should be somewhat symmetrical. This gives nonparametric 
methods a major advantage. 

2. Computations can be performed speedily and easily—a prime advantage 
when a quick preliminary indication of results is needed. 

3. They are well suited to experiments or surveys that yield outcomes that 
are difficult to quantify. In such cases, the parametric methods, although 



Section 14.3 / Wilcoxon Rank-Sum Test 	 223 

statistically more powerful, may yield less reliable results than the non- 
parametric, which tend to be less sensitive to the errors inherent in ordinal 
measurements. 

There are also three distinct disadvantages of nonparametric methods: 

1. They are less efficient (i.e., they require a larger sample size to reject a false 
hypothesis) than comparable parametric tests. 

2. Hypotheses tested with nonparametric methods are less specific than 
those tested comparably with parametric methods. 

3. They do not take advantage of all of the special characteristics of a distri-
bution. Consequently, these methods do not fully utilize the information 
known about the distribution. 

In using nonparametric methods, you should be careful to view them as 
complementary statistical methods rather than attractive alternatives. With a 
knowledge of their advantages and disadvantages and some experience, you 
should be able to determine easily which statistical test is the most appropriate 
for a given application. 

An inherent characteristic of many nonparametric statistics is that they deal 
with ranks rather than values of the observations. The observations are ar-
ranged in an array, and ranks are assigned from 1 to n. Consequently, computa-
tions are simple; you deal only with positive integers: 1, 2, 3, ... , n. When work-
ing with ranks we often need to compute the sum of the numbers 1 through a, 
which, we recall from algebra, equals n(n + 1)/2. For example, the sum of the 
first 10 integers is 10(10 + 1)/2 = 55. 

Though there are numerous nonparametric methods, we will limit ourselves 
to those that correspond to parametric t tests for independent samples, depen-
dent samples, and correlation coefficients. These techniques are the Wilcoxon 
rank-sum test, the Wilcoxon signed-rank test, the Spearman rank-order correla-
tion coefficient, the Kruskal-Wallis one-way ANOVA, and the Sign Test. We will 
also present the Fisher's exact test, which is to be used when the X 2  test would 
not be valid to use. 

4.3 WI LCOXON RANK-SUM TEST 

The Wilcoxon rank-sum test is used to test the null hypothesis that there is no 
difference in the two population distributions. Based on the ranks from two in-
dependent samples, it corresponds to the t test for independent samples, except 
that no assumptions are necessary as to normality or equality of variances. 

To carry out this test with data from Table 14.1, we proceed as follows: 
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Table 14.1 Wilcoxon Rank-Sum Test for Two Independent Samples: Number of Prenatal- 
Care Visits for Mothers Bearing Babies of Low and of Normal Birthweight 

Mothers Bearing Low-Birthweight Babies 	 Mothers Bearing Normal-Birthweight Babies 

No. X (Number of Visits) R (Rank) No. X (Number of Visits) R (Rank) 

1 3 5.5* 1 4 7.5* 

2 0 1.5* 2 5 9 

3 4 7.5* 3 6 10 
4 0 1.5* 4 11 15 
5 1 3 5 7 11 
6 2 4 6 8 12 
7 (= ri i ) 3 5.5* 7 10 14 

8 (= n,,) 9 13 

W, = 28.5 W, = 91.5 

R i  = 4.1 R2  = 11.4 

*Two-way tie. 

1. Combine the observations from both samples and arrange them in an 
array from the smallest to the largest. 

2. Assign ranks to each of the observations. 

3. List the ranks from one sample separately from those of the other. 

4. Separately sum the ranks for the first and second samples. 

Given the hypothesis that the average of the ranks is approximately equal for 
both samples, the test statistic W1  (the sum of the ranks of the first sample), 
should not differ significantly from W, (the expected sum of the ranks). Accord-
ingly, we can show that the expected sum of the ranks for the first sample is 

n i (n + n2  ± 1) 
2 

We have shown that if we obtain W1 's from repeated samples of lists of ranks, 
the standard error, (T„, is 

(14.1) 

07a , = 
in 1 	 n,(n 1  + n + 1) i   

12 
(14.2) 

We have further shown that, regardless of the shape of the population distribu-
tion, the sampling distribution for the sum of a subset of ranks is approximately 
normal. Consequently, we have what we need to perform a test of significance 
regarding the equality of the distributions, namely, 

12 
(14.3) 
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Utilizing the data of Table 14.1, we can compute the Z statistic, which compares 
W1 , the sum of the sample ranks, to We , the value that would be expected if the 
hypothesis were true. 

This test assumes that if the first sample has primarily smaller observations 
than the second sample, then the rank values obtained from the combined sam-
ple will be small, giving a small Wl . This implies that the values of the first dis-
tribution will be located on the lower end of the combined distribution—which, 
of course, is contrary to the H o  that the two distributions are equal. 

In attempting to rank the data in Table 14.1, we notice that we have three 
two-way ties, for zero, three, and four visits. Traditionally, the procedure is to 
assign the average of the ranks to each tie. For example, the two zeros rank first 
and second, so we assign them both the average rank of 1.5. 

To compute the Z statistic, we will need the expected rank sum. To obtain it, 
we use equation 14.1:  

+ n2  + 1) 7(7 + 8 + 1) 56  
2 	 2 

(14.4)  

To determine whether there is a significant difference between the observed 
sum of 28.5 obtained from Table 14.1, and the expected value of 56, we use equa-
tion 14.3: 

Z =  
– W       

Vn 1 n 2(n 1  + n2  + 1)/12 

28.5 – 56 

0(8)(15 + 1)/12 

	

–27.5 	 –27.5 

	

V74.67 	
8.6 = 3.2 

From this, we see that the mothers with the low-birthweight infants had a rank 
sum of 28.5, considerably lower than the expected rank sum of 56. In fact, the 
observed rank sum falls 3.2 standard errors below the mean of a normal distri-
bution of rank sums. So our conclusion, based on rank sums, is that the moth-
ers bearing low-birthweight infants had a significantly lower number of prena-
tal visits than the mothers bearing normal-birthweight infants. This conclusion 
is not surprising, as we can see from comparing the average rankings of the pre-
natal care visits of the two groups of mothers: R 1  = 4.1 versus R2  = 11.4. 

We are able to perform this Z test because W is approximately normally dis-
tributed. This situation holds if we have at least six cases in each of the groups. 
Can we perform exact tests if we have smaller sample sizes? Yes. For such 
methods, with accompanying tables, see an advanced text such as Brown and 
Hollander (1977). 
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As mentioned earlier, the rank-sum test parallels the t test for two indepen-
dent samples, but it is less powerful. Its power efficiency is greater than 92",,, 
measured by the performance of repeated rank-sum tests on normally distrib- 
uted data. 

14.4 WILCOXON SIGNED-RANK TEST 

In previous chapters, we also considered the paired t test for matched observa-
tions. The counterpart nonparametric test' to this is the Wilcoxon signed-rank 
test. With this test, we assume that we have a series of pairs of dependent ob-
servations. We wish to test the hypothesis that the median of the first sample 
equals the median of the second; that is, there is no tendency for the differences 
between the outcomes before and after some condition to favor either the before 
or the after condition. 

The procedure is to obtain the differences (d) between individual pairs of ob-
servations. Pairs yielding a difference of zero are eliminated from the computa-
tion; the sample size is reduced accordingly. 

To perform the test, we rank the absolute differences by assigning ranks of 1 

for the smallest to n for the largest. If ties are encountered, they are treated as be-
fore. The signs of the original differences are restored to each rank. We obtain 
the sum of the positive ranks, W1 , which serves as the test statistic. If the null hy-
pothesis is true, we would expect to have about an equal mixture of positive 
and negative ranks; that is, we would expect the sum of the positive ranks to 
equal that of the negative ranks. 

Using the data in Table 14.2 on pregnancy and smoking, we see that, because 
each pair of observations is on the same woman, we have dependent samples; 
therefore the Wilcoxon signed-rank test is the appropriate one to perform. The 
column denoted by d represents differences (before and after pregnancy); the 
column labeled r(1  is the rank by size of the absolute difference. Rank 1 is as-
signed to the smallest and n (here, 10) to the largest. Now we can obtain IA/ 1  and 
W2, the sums, respectively, of the positive and negative ranks. Recall that the 
sum of all ranks is n(n + 1)/2. Under the null hypothesis we assume that the 
sum of the ranks of the positive d's is equal to the sum of the ranks of the nega-
tive d's; that is, each will be half of the total sum of the ranks, or, algebraically, 
the expected sum of the ranks will be 

n(n + 1) 

We (2, 	 2 
(14.5) 

which, for the data of Table 14.2, is 10(11)/4 = 27.5. The test statistic is the 
smaller of the sums, namely, W1  = 7. 
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Table 14.2 Wilcoxon Signed-Rank Test: Number of Cigarettes Usually Smoked per Day, 
Before and After Pregnancy 

Subject 

Number of Cigarettes Smoked per Day 

xi , xi,: Before Pregnancy x,,: After Pregnancy 

1 8 5 —3 3 3(—) 
2 13 15 +2 2 2(+) 
3 24 11 —13 13 9 ( — ) 
4 15 19 +4 4 4(+) 
5 7 0 —7 7 7 ( —) 
6 11 12 +1 1 1(+) 
7 20 15 —5 5 5( —) 
8 22 0 —22 22 10( —) 
9 6 0 —6 6 6(—) 

10 15 6 —9 9 8(—) 
11 20 20 0 

+ 1) 	 10(11) 
= 	 = 55 

2 	 2 
Ir 

W, = d  = 55 = 27.5 
2 

= W2  = 48 

Because W1  is approximately normally distributed with a mean of We  and a 
standard deviation of o-,,, we are able to perform a Z test for the difference be-
tween the sums of the matched ranks by using the following equation: 

— 

Z = 	 w' 
a-u,  

vvl — we 
V(2n + 1)We /6 

7 — 27.5 

Vt2(10) + 1127.5:6 

—20.5 
N/96.25 

(14.6) 

This result indicates that the difference between the observed and expected 
rank sums is significant (p < .05). Thus, it leads us to reject the Ho  that there is 
no difference between smoking status before and after pregnancy. The implica-
tion: There is a significant reduction in the smoking habit consequent to preg-
nancy. 

The Wilcoxon signed-rank test has a power efficiency of 92% as compared 
with paired t tests, which satisfy the assumption of normality. Note that this 
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technique is somewhat less sensitive than the parametric one in that the ranks 
do not directly describe the amount of reduction in smoking. 

The assumption of normality for the sum of the signed-rank test is appropri-
ate, providing you have at least eight pairs. For a smaller sample size, you will 
need an exact test. Tables for such a test are available in more advanced text-
books, such as Brown and Hollander (1977), which also includes confidence in-
tervals for the Wilcoxon tests. 

A natural question arises here: Does a nonparametric procedure exist for 
making comparisons of more than two groups? That is, is there a parallel non- 
parametric ANOVA test? There is; it is called the Kruskal–Wallis test. For a dis-
cussion, see a text such as Steel and Torrie (1980). 

14.5 KRUSKAL-WALLIS ONE-WAY ANOVA BY RANKS 

The Kruskal–Wallis test is the nonparametric equivalent of the one-way 
ANOVA. This technique is an alternative to the one-way ANOVA when you 
have three or more groups, the groups are independent, and the populations 
from which the samples are selected are not normally distributed or the sam-
ples do not have equal variances. It can also be used when you have ordered 
outcomes—that is, ordinal data rather than the interval or ratio data necessary 
to use an ANOVA. For example, suppose the rows represent three or more pain 
relievers and the columns represent distinct, ordered responses. These re-
sponses might be no relief, mild relief, moderate relief, strong relief, and com-
plete relief (Mehta, 1994). The example used in this chapter will start with ratio 
data and the assumption that the one-way ANOVA is not the appropriate pro-
cedure because of one of the reasons just described. 

To use the Kruskal–Wallis technique you combine the observations of the 
various groups. After arranging them in order of magnitude from lowest to 
highest you then assign ranks to each of the observations and replace them in 
each of the groups. What you have just done is convert the original ratio data 
into ordinal or ranked data. If you started with ordinal data, this conversion 
would not be necessary. 

Next the ranks are summed in each of the groups and the test statistic H is 
computed. The rank assigned to observations in each of the K groups are added 
separately to give K rank sums. 

The test statistic is computed using 

12 
H = 

N(N + 1) L n 
 N(N + 1) 

R ,2  

= 12 L – N(N + 1) 
11 

(14.5) 
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In this quotation 

k = the number of groups 

n = the number of observations in the jth group 

N = the number of observations in all groups combined 

R 1  = the sum of the ranks in the jth group 

Let us look at performance scores of three different types of teachers. 

Teacher Type 

A 

96 8 115 
128 124 149 
83 132 166 
61 135 147 

101 109 

The table of corresponding ranks is shown here. 

Teacher Type 

A 
	

B 	 C 

4 2 7 
9 8 13 
3 10 14 
1 11 12 
5 6 

R, = 22 R2  = 37 R, = 46 

Using an example from Siegal (1956) 3, we can now calculate statistic H. 

12 	 k R2 12 /222 	 372 	 462  \ H = 	 E i 3(N + 1) = 	 + 	 + 	 3(14 + 1) 14(14 + 1) 	 n1 	 14(15) \ 5 	 5 	 4 , 

= 6.4 

When we refer to Appendix F, it shows that when the // I 's are 5, 5, and 4, 
H > 6.4 has probability of occurrence under the null hypothesis of (p < .049). 

However, because the probability is smaller than a = .05, our decision in this 
study is to reject Ho, and we conclude that the three groups of educators differ 
in their scores. 
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Tied Observations 

When two or more scores are tied, each score is given the mean of ranks for 
which it is tied. Because H is somewhat influenced by ties, one may wish to cor-
rect for ties in computing H. To correct for the effect of ties, H is computed from 
the formula on the previous page and divided by 

T 
1 

N 3  – N 

where T is the number of tied observations in a tied group of scores. 
The effect of correcting for ties is to increase the value of H and thus make the 

result more significant than it would have been if H remained uncorrected. In 
most cases the effect of correction is negligible. With even 25% of observations 
involved in ties, the probability associated with an H computed without the cor-
rection for ties is rarely changed by more than 10`)/0 when the correction of ties is 
made. (See Mehta, 1994.) 

14.6 	 THE SIGN TEST 

The sign test is one of the simplest of statistical tests. It focuses on the median 
rather than the mean as a measure of central tendency. The only assumption 
made in performing this test is that the variables come from a continuous dis-
tribution. 

It is called the "sign test" because we use pluses and minuses as the new data 
in performing the calculations. We illustrate its use with a simple sample and a 
paired sample. The sign test is useful when we are not able to use the t test be-
cause the assumption of normality has been violated. 

Single Sample 

In the case of a single sample, we wish to test the H o  that the sample median is 
equal to population median in. To do this, we assign ( + ) to observations that fall 
above the population median and (– ) to those that fall below the population 
median. A tie is given a zero and is not counted. If the Ho  is true—that the me-
dians are the same—we expect an equal number: 50% pluses and 50% minuses. 

We can use the binomial distribution to determine if the number of positive 
signs deviates significantly from some expected number. Instead of using the 
binomial equations, however, we can use the table in Appendix D. This table 
shows the probability of having the observed number of pluses when we expect 
50%. 

n EXAMPLE 1 

In an anesthetic used for major surgery, the median number of hours it takes for 
the anesthesia to wear off is 7. A new agent has been suggested that supposedly 
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provides relief much sooner. In a series of 12 surgeries using the new anesthetic, 
the following times for recovery were observed: 

	

Recovery time: 	 4 	 4 	 5 	 5 	 5 	 6 	 6 	 6 	 7 	 7 	 8 	 9 

	

Sign: 	 0 	 0 

Ho: The median recovery time for the new anesthetic is 7 hours. 

Because the suggestion is made that the new anesthetic is better, we have a one- 
tailed test. We can see that eight outcomes are less than the median of the stan-
dard anesthetic and two are more. We exclude the two with a score of 7 hours 
because they are equal to the median of 7. Thus, we observe two pluses when 
we expected 5 pluses under the Ho . 

To determine the probability that the two pluses occur randomly, we can use 
the binomial distribution formula or the table of critical values for the sign test 
shown in Appendix D. From this table we can see, for n = 10 and for an a = .05 
one-sided test, that q = 1 or 9. Therefore, for this sample to have a significantly 
better recovery time than 7 hours, it will require nine minuses or one plus. We 
observed eight minuses, so we cannot reject H o; that is, we find no statistically 
significant difference between the recovery time from the sample and that of the 
population median. n 

Paired Samples 

The sign test is also suitable for experiments with paired data such as before or 
after, or treatment and control. In this case, we need to satisfy only one as-
sumption—that the different pairs are independent; that is, only the direction of 
change in each pair is recorded as a plus or minus sign. We expect an equal 
number of pluses or minuses if there is no treatment effect. The H o  tested by the 
paired samples sign test is that the median of the observations listed first is the 
same as that of the observations listed second in each pair. 

n EXAMPLE 2 

Ten blood samples were sent to two labs for cholesterol determinations. The re-
sults from the two labs are as follows: 

Serum Cholesterol Determinations Obtained from Two Labs on the Same Samples 

Patient 1 2 3 4 5 6 7 8 9 10 
Lab A 296 268 244 272 240 244 282 254 244 262 
Lab B 318 287 260 279 245 249 294 271 262 285 
Sign of 
difference 
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Ho: The median serum cholesterol determination of both labs is equal. 

We can see that all 10 observations are minuses. What are the chances of ob-
taining such a result by chance? From the table in Appendix D we can see that 
for n = 10 the critical value of q is either 1 or 9 for an a = .05 two-sided test. 
Consequently, because our result was equal to 10, we conclude that there is a 
significant difference in the way the two labs determine cholesterol levels. n 

14.7 SPEARMAN RANK-ORDER CORRELATION COEFFICIENT 

In Chapter 13, we discussed in detail the Pearson correlation coefficient, which 
describes the association between measurement variables x and y. In this sec-
tion, we discuss an association between two ranked variables. With the Spear-
man rank-order correlation coefficient, we obtain perfect correlation (±1) if the 
ranks for variables x and y are equal for each individual. Conversely, lack of as-
sociation is measured by examining the differences in the ordered ranks, 

= xi  — y,. The Spearman rank-order correlation coefficient, r, (the s is for 
Spearman), can be derived from the Pearson correlation coefficient r. The equa-
tion is 

6Eci 
= 1 

n(n 2  — 1) 
(14.7) 

where di  is the difference between the paired ranks and 11 is the number of pairs. 
Like the Pearson correlation coefficient, the Spearman rank-order correlation 
coefficient may take on values from —1 to +1. Values close to ±1 indicate a high 
correlation; values close to zero indicate a lack of association. The minus or plus 
signs indicate whether the correlation coefficient is negative or positive. 

To illustrate the use of the Spearman rank-order correlation coefficient, let us 
consider a situation that is all too familiar to any college student. The work of 12 
students is observed independently by two faculty evaluators, who rank their 
performance from 1 to 12 (Table 14.3). As before, ties in rank are handled by av-
eraging the ranks. Note that observer C had a three-way tie for first place. The x 
and y columns of Table 14.3 are the ranks, the d, column is the difference be-
tween the ranks, and the final column is Using equation 14.7, we obtain 

6Ed 2  
rs  =- 1 — 

n(n 2  — 1) 

6(55.50) 
= 1 — 	 — .81 

12(144 — 1) 
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To determine whether this coefficient differs significantly from zero, we need to 
assume that x and y represent randomly selected and independent pairs of 
ranks. We can use the same test procedure as for the Pearson r. It provides a 
good approximation if the sample size is at least 10. The equation for the test 
statistic is 

r Vn - 2 
t = 	  

V1 - r2  

with n - 2 df. Using the data from Table 14.3, we find that 

	

.81V10 	 (.81)(3.16)  
t =  	 - 4.41 

	

eV1 - .66 	 .58 

(14.8) 

Because the computed t of 4.41 is greater than the critical t 95  of 2.23 for 10 df, we 
reject Ho  and conclude that the correlation differs significantly from zero. 

Whenever you are able to meet the assumptions for computing a Pearson r, 
use it. It is preferable to the Spearman rs  because the power of the latter is not as 
great as that of r. For samples having 10 or fewer observations, see advanced 
textbooks such as Dixon and Massey (1969) and Brown and Hollander (1977), 
which also give tabulations for critical values of rs . 

Table 14.3 Ranking of Students' Performance by Two Independent Observers 

Observer B: 	 Observer C: 
Student 	 Rank Order 	 Rank Order 	 d, = 	 d - 

No. 	 (x) 	 (y) 	 x, - y 	 (x, - Y,) 2  

1 2.5* 5 -2.5 6.25 
2 2.5* 2t  0.5 0.25 
3 9 8 1.0 1.00 
4 5.5* 7 -1.5 2.25 
5 12 12 0 0 
6 7.5* 11 -3.5 12.25 
7 1 2' -1.0 1.00 
8 10 6 4.0 16.00 
9 4 2' 2.0 4.00 

10 5.5* 4 1.5 2.25 
11 7.5* 10 -2.5 6.25 
12 11 9 2.0 4.00 

= 55.50 

*Two-way tie. 
'Three-way tie. 
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14.8 	 FISHER'S EXACT TEST 

The chi-square test described in Chapter 12 has a limitation. It is not appropri-
ate for a situation in which the sample size is small, yielding small expected fre-
quencies. There should be no expected frequencies less than 1, and not more 
than 20% of the expected frequencies are to be less than 5. For a situation like 
this, we should consider using Fisher's exact test, which computes directly the 
probability of observing a particular set of frequencies in a 2 x 2 table. It is cal-
culated using the following formula: 

P =
(a  + b)!(c + d)! (a + c)! (b + d)! 

N! a! b! c! d! 
(14.9) 

where a, b, c, and d are the frequencies of a 2 x 2 table and N is the sample size. 

n EXAMPLE 3 

An infant heart transplant surgeon had nine infant patients who needed a heart 
transplant. Only five suitable donors were identified. A follow-up of the nine 
patients was done a year later to see if there was a difference in the survival 
rates of those with and without heart transplants. The following results were 
found: 

Heart Transplant Candidates 

Alive 12 Months Later? 

Yes 	 No 	 Total 

Surgery 	 Yes 	 a = 4 	 b= 1 	 5 
Performed 	 No 	 c = 1 	 d = 3 	 4 

Total 	 5 	 4 	 9 

The probability of observing this particular set of frequencies is 

5! 4! 4! 5! 	 5  4 • 3 2 • 4 	 20 
P = 	 = 	 = 0.159 

9! 4! 1! 1! 3! 	 6 • 7 • 8 • 9 	 126 

However, to compute the P value, we need to find the probability of obtaining 
this or a more extreme result while keeping the marginal totals in the table 
fixed. A more extreme result would be, for example, if all of the infants without 
a heart transplant were dead a year later. To do this, we reduce by 1 the small-
est frequency that is greater than zero while holding the marginal totals con-
stant in the table on heart transplant candidates. This gives the following 2 x 2 
table: 
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5 	 0 	 5 
0 	 4 	 4 

5 	 4 	 9 

The probability of obtaining this set of frequencies is 

5! 4! 4! 5! 	 5!4! 	 4 - 3 • 2 ••1 	 1 
P = 

9! 5! 0! 0! 4! 

Thus, the probability of observing this particular frequency of successful trans-
plants or a more extreme frequency is 0.159 + 0.008 = 0.167. This P value is for 
a one-tail test. An estimate of the P value for a two-tail test is obtained by mul-
tiplying the value by 2: 2 X 0.167 = 0.334. Based on this outcome, we would fail 
to reject the Ho  that there is no difference in the survival rate between infants 
with or without a heart transplant. Although this result may be difficult to ac-
cept, it is the best we can do with such a small sample. There has been some con-
troversy as to whether it is appropriate to use Fisher's exact test in the health 
sciences because the model requires that the marginal totals in the 2 X 2 table 
be fixed—and they seldom are in actual health science settings. Nevertheless, 
some statisticians use this test anyway because the test results tend to give con-
servative values of P; that is, the true P value is actually less than the computed 
one. n 

Conclusion 

There are nonparametric methods that correspond to such parametric methods 
as the t test, paired t test, and correlation coefficient. The primary advantage of 
these methods is that they do not involve such restrictive assumptions as those 
of normality and homogeneity of variance. Their major disadvantage is that 
they are less efficient than the corresponding parametric methods of the five 
methods described here—the Wilcoxon rank-sum test, the Wilcoxon signed- 
rank test, the sign test, the Spearman rank-order correlation coefficient, and 
Fisher's exact test. These are the nonparametric methods used most frequently 
in the health sciences. 

Vocabulary List 

Fisher's exact test 
Kruskal–Wallis test 
nonparametric methods 

(distribution-free 
methods) 

parametric methods 	 Wilcoxon rank-sum test 
sign test 	 Wilcoxon signed-rank 
Spearman rank-order 	 test 

correlation coefficient 

= 	 = .008 
9! 	 6 • 7 • 8 • 9 	 126 
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Exercises 

14.1 	 To learn if babies who were breast-fed had a better dental record than those who 
were not, 13 children were picked at random to see at what age they acquired 
their first cavities. The results were as follows: 

Subject 
Breast-Fed— 

Yes/No 
Age at 

First Cavity 

1 No 9 
2 No 10 
3 Yes 14 
4 No 8 
5 Yes 15 

6 No 6 
7 No 10 
8 Yes 12 
9 No 12 

10 Yes 13 

11 No 6 
12 No 20 
13 Yes 19 

a. State the null hypothesis. 
b. State the alternative hypothesis. 
c. Do a Wilcoxon rank-sum test. 

14.2 Refer to Table 2.2. Compute a Wilcoxon rank-sum test to determine whether 
there is a significant difference in diastolic blood pressure between 
a. vegetarian males and nonvegetarian males 
b. vegetarian males and vegetarian females 

14.3 Two communities are to be compared to see which has a better dental record. 
Town A has fluoride in the water; Town B does not. Ten persons are randomly 
picked from each town and their dental cavities are counted and reported. The 
data are as follows: 

Person 

1 2 3 4 5 6 7 8 9 10 

Town A 0 1 3 1 1 2 1 2 3 1 
Town B 3 2 2 3 4 3 2 3 4 3 

a. State the null hypothesis. 
b. State the alternative hypothesis. 
c. Do a Wilcoxon rank-sum test. 

14.4 There are two methods of counting heartbeats: (1) by counting the pulse at the 
wrist and (2) by counting the pulse on the neck. An investigator wishes to know 
the degree of correlation between the two methods. The data are as follows: 
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Person 

1 2 3 4 5 6 7 8 9 10 

Neck pulse 
Wrist pulse 

73 
74 

99 
103 

77 
77 

63 
61 

50 
51 

80 
81 

83 
82 

73 
74 

66 
66 

82 
83 

a. State the null hypothesis. 
b. State the alternative hypothesis. 
c. Do a Spearman rank-order correlation coefficient. (Hint: Rank the neck pulse 

from highest to lowest; do the same for the wrist pulse.) 

14.5 Two health inspectors rate 11 hospitals on cleanliness, as shown in the tabulation 
that follows. Determine if their rankings are comparable. 

Hospital 

1 2 3 4 5 6 7 8 9 10 11 

Inspector 1 2 3 2 3 1 4 5 3 1 3 4 
Inspector 2 1 3 3 2 2 5 4 2 1 4 3 

a. State the null hypothesis. 
b. State the alternative hypothesis. 
c. Perform the appropriate test. 

14.6 a. What is meant by nonparametric methods? 
b. What are their advantages? 
c. What are their disadvantages? 

14.7 	 Describe the conditions that call for using each of the following tests: 
a. Wilcoxon rank-sum test 
b. Wilcoxon signed-rank test 
c. Spearman rank-order correlation coefficient 

14.8 A group of 11 hypertensive individuals determined to find out if they could 
lower their systolic blood pressure through a systematic physical fitness pro-
gram. They observed their blood pressure before they began their program and 
then again six months later. The following results were found: 

Systolic Blood Pressure 

Case 1 2 3 4 5 6 7 8 9 10 11 

Before 156 130 142 155 174 140 148 152 156 136 126 
After 148 124 135 146 169 145 140 156 161 133 123 

a. State the Ho  and Hi . 
b. Perform the Wilcoxon signed-rank test at the a = .05 level. 
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14.9 	 a. Calculate a Spearman rank-order correlation coefficient on the data of Exer- 
cise 14.8. 

b. State the Ho  and H1  and perform a test of significance at the a = .01 level. 

14.10 For the data in Exercise 9.14, determine whether the experimental condition in-
creases the number of heartbeats per minute. 
a. State the Ho  and H 1 . 
b. Perform the appropriate test of significance at the a = .05 level. 

14.11 An investigator observed the following response to two different dental treat-
ments: 

Treatment A Treatment B Total 

Favorable 4 2 6 
Not favorable 1 4 5 

Total 5 6 11 

a. Determine whether the differences in response rates between treatments A 
and B are significant at a = .05. 

b. What was the H11  that you tested in (a)? 

14.12 a. Using the data of Exercise 14.8, perform a sign test. Indicate the Ho  you are 
testing and whether or not you would reject it at the a = .05 level. 

b. Using the data of Exercise 14.4, perform a sign test. Indicate the H11  you are 
testing and whether or not you would reject it at the a = .05 level. 

14.13 A study investigated dietary differences between low income African-American 
women and low income white women. One dietary practice examined was the 
daily serving of meats (1 serving = 3 oz. edible portion of meat). Based on the 
following table, is there any reason to believe that there are differences between 
low income African-American women and low income white women, with re-
spect to their consumption of meats? 

Meats 

Number of servings 

African American 	 0 	 0 	 1 	 1 	 1 	 2 	 2 	 3 	 3 	 3 	 3 	 3 	 5 	 6 
White 	 0 	 0 	 0 	 1 	 2 	 2 	 2 	 2 	 3 	 3 	 4 

NOTE: This data was extrapolated and based on Cox (1994). 

a. State the null hypothesis. 
b. State the alternative hypothesis. 
c. Do a Wilcoxon rank-sum test. 

14.14 Exercise 14.13 is based on an actual study conducted by Ruby Cox. In her study, 
there were 115 African-American women and 95 white women sampled. When 
she used the Wilcoxon procedure, she found a significant difference in the daily 
meat consumption of the two groups of women (African-American women con-
sumed more). If you calculated your statistics correctly for Exercise 14.13, you 
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did not find a significant difference. This illustrates a weakness of the Wilcoxon 
rank-sum test. What is that weakness? 

14.15 Nurses are often expected to subjectively evaluate a patient's comfort level. A 
nurse researcher wanted to determine if the subjective ranking done by 2 nurses 
(working with the same patients) of comfort levels of 15 patients were similar. 
Based on the following data, is there a relationship between the rankings of the 
two nurses? 

Comfort Rank 

Patient Nurse 1 Nurse 2 

A 2 1 
B 4 3 
C 12 14 
D 1 2 
E 15 11 
F 8 8 
G 3 6 
H 6 4 
I 11 13 
J 9 10 
K 5 5 
L 14 15 
M 10 9 
0 7 7 
P 13 12 



1 5 Vital Statistics and 
Demographic Methods 

Chapter Outline 

15.1 Introduction 
Points out the importance of vital statistics and demographics 

15.2 Sources of Vital Statistics and Demographic Data 
Discusses three sources of data—census data, registration of births 
and deaths, and morbidity data—as the building blocks for comput- 
ing vital rates, ratios, and proportions 

15.3 Vital Statistics Rates, Ratios, and Proportions 
Introduces the concepts of rates, ratios, and proportions within the 
context of vital statistics 

15.4 Measures of Mortality 
Presents a variety of measures, each being a means of measuring the 
frequency of deaths in a community 

15.5 Measures of Fertility 
Shows two key methods for quantifying fertility that are indispens- 
able in making population estimates 

15.6 Measures of Morbidity 
Describes three of the many measures of illness that exist 

15.7 Adjustment of Rates 
Explains how to make reasonable comparisons between noncompa- 
rable populations 

Learning Objectives 

After studying this chapter, you should be able to 

1. Distinguish among 
a. rates, ratios, and proportions 
b. measures of morbidity, mortality, and fertility 

2. Compute and understand the meaning of various vital measures 

3. State the reasons why measures are adjusted 

4. Compute an adjusted rate by the direct method 

240 
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INTRODUCTION 

Decision making in the health sciences, especially public health, is continually 
becoming more quantitative. Demographic data and vital statistics have 
emerged as indispensable tools for researchers, epidemiologists, health plan-
ners, and other health professionals. To determine the health status of a com-
munity, to decide how best to provide a health service, to plan a public health 
program, or to evaluate a program's effectiveness, it is essential to use these 
tools knowledgeably. 

Demographic variables describe a population's characteristics—for in-
stance, its size and how that changes over time; its composition by age, sex, in-
come, occupation, and utilization of health services; its geographic location and 
density. Once you possess demographic data and information about vital 
events (births, deaths, marriages, and divorces), you can tackle a remarkable 
variety of problems regarding a community's status at a particular time or its 
trends over a period. Together with measures of illness and disease, demo-
graphic data are invaluable in program planning and disease control. Such data 
also go a long way toward providing research clues as to the often-unexpected 
associations between a population's health practices and its disease experience. 

A wide array of methodological tools is available to deal with such data. In 
this chapter, we consider vital rates, ratios, proportions, measures of fertility and 
morbidity, and adjustment of rates. But first, we discuss some of the sources of 
demographic data and vital statistics. 

.2 	 SOURCES OF VITAL STATISTICS 
AND DEMOGRAPHIC DATA 

The three main sources of demographic data, vital statistics, and morbidity data 
are the census, registration of vital events, and morbidity surveys. These are 
usually given for defined populations such as cities, states, and other political 
areas. Traditionally, hospital and clinic data have also been major sources of 
morbidity data. Although they are useful, however, the populations of reference 
may be difficult to define. 

The Census 

The United States has conducted decennial census of the population since 1790. 
In a census, each household and resident is enumerated. Information obtained 
on each person includes his or her sex, age, race, marital status, place of resi-
dence, and relationship to or position as the head of household. A systematic 
sample of households then provides more information, such as income, 
housing, number of children born, education, employment status, means of 
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transportation to work, and occupation. Census tables are published for the en-
tire United States, for each state, for Metropolitan Statistical Areas (MSAs), for 
counties, and for cities, neighborhoods (census tracts), and city blocks. The 
MSAs are urbanized areas. An area qualifies as an MSA if it has one or more 
cities of at least 50,000 residents and there is a social and economic integration 
of the cities with the surrounding rural areas. In the 1990 census, there were 
332 MSAs (including 5 in Puerto Rico). 

Census results are published in the Decennial Census of the United States about 
two years after the census is taken. They are also made available on magnetic 
tape for computerized analysis. A good deal of census information is summa-
rized annually in the Statistical Abstract of the United States. The importance of 
census data is universally recognized. More than four-fifths of the world's pop-
ulation is counted in some kind of census at more or less regular intervals. 

Annual Registration of Vital Events 

As noted earlier, vital events are births, deaths, marriages, and divorces. In the 
United States, state laws require that all vital events be registered. Registration 
is now quite complete and reliable. Birth certificates serve as proof of citizen-
ship, age, birthplace, and parentage; death certificates are required as burial 
documents and in the settlement of estates and insurance claims. In the United 
States, death registration began in Massachusetts in 1857, was extended to 
10 states, the District of Columbia, and several other cities by 1900, and has been 
nationwide since 1933. Birth registration began in 1915, encompassing 10 states 
and the District of Columbia. By 1933, all states had been admitted to the na-
tionwide birth and death registration system. A great deal of information is 
recorded on birth and death certificates. Some of the key elements are as fol-
lows: 

Birth certificate Death certificate 

Name 
	 Name 

Sex 	 Date and time of death 

Date and time of birth 
	

Race 

Weight and length at birth 
	

Age 

Race of parents 
	 Place of birth 

Age of parents 	 Names of decedent's parents 

Birth order 	 Name and address of survivor 

Occupation of father 
	 (or informant) 

Place of birth 
	

Marital status 

Residence of mother 	 Occupation 



Section 15.2 / Sources of Vital Statistics and Demographic Data 	 243 

Birth certificate 	 Death certificate 

Physician's (or attendant's) certification Place of residence 
Cause(s) of death 
Place of death 
Burial data 
If death due to injury: accident, 

suicide, or homicide 
Physician's (or coroner's) certi-

fication 

The National Center for Health Statistics collects a systematic sample of 10% 
of the births and deaths in each state. From this, it publishes the monthly Vital 
Statistics Report. Annually, it issues the four-volume set Vital Statistics of the 
United States, which includes many detailed tables on vital events for all sorts of 
demographic characteristics and for major geographical subdivisions. Data on 
marriages and divorces are similarly collected and published in a separate vol-
ume of Vital Statistics of the United States. 

The federal government has been instrumental in getting the various states 
to adopt standard birth and death certificates. This enables researchers to collect 
more standardized information. All states now compile computerized death 
certificate data, or "death tapes," which are computer-readable extracts of the 
most important data appearing on death certificates. Since 1979, the National 
Center for Health Statistics has prepared the National Death Index, a nation-
wide, computerized index of death records compiled from tapes submitted by 
the vital statistics offices of each state. These tapes contain a standard set of 
identifying data for each decedent. The index (National Center for Health Sta-
tistics, 1981) permits researchers to determine if persons in their studies have 
died; for each such case, the death certificate number is available, along with 
the identity of the state where the death occurred and the date of death. Given 
these mortality data, the researcher can order a copy of the death certificate 
from the state's vital statistics office. 

One of the tasks performed by the National Center for Health Statistics is to 
classify deaths into various numerical categories. This very complex task is per-
formed by nosologists who use the two current volumes on how to classify a 
particular cause of death (COD). This classification is then used to tabulate data 
according to various codes. 

Morbidity Surveys 

Morbidity data (i.e., data on the prevalence of disease) are far more difficult to 
gather and interpret than are mortality data. Whereas death registration is now 



244 	 Chapter 15 / Vital Statistics and Demographic Methods 

estimated to be 99`)/() complete, cases of communicable disease are all too often 
underreported. 

Reporting of communicable diseases is a time-honored, if flawed, method of 
gathering morbidity data. In 1876, Massachusetts tried voluntary case report-
ing; the first compulsory reporting began in Michigan in 1883 (Winslow et al., 
1952). But even now, a century later, there are wide gaps in the data. California, 
for example, has 52 reportable diseases; other states have fewer. Various sur-
veys have concluded that the more serious diseases are well reported. But 
whereas virtually every case of cholera, plague, yellow fever, rabies, and para-
lytic polio is promptly brought to the attention of health authorities, the com-
mon childhood diseases are notoriously underreported. 

Each local health department tallies the number of cases of reportable com-
municable disease within its area and forwards its count to the state health de-
partment, where a cumulative total is made and sent to the Centers for Disease 
Control in Atlanta for publication in Morbidity and Mortality Weekly Reports 
(MMWR). 

Because of this chronic underreporting, a number of novel systems have been 
developed to make better estimates of morbidity data. In the following partial 
list of these systems, note that many of them go far beyond communicable- 
disease reporting to include data on noninfectious, occupational, and chronic 
diseases. 

1. Reportable diseases 
2. National Health Survey 
3. Hospital records data 
4. Industrial hygiene records 
5. School nurse records 
6. Medical care subgroups (most often: prepaid medical plans) 
7. Chronic-disease registries (most often: tumor registries) 
8. Insurance industry data 

The National Health Survey is worthy of special note. Originated by an Act 
of Congress in 1956, it provides for an annual nationwide survey of a represen-
tative sample of 40,000 persons. A number of subprograms are included, the 
most notable of which are the National Health Interview Survey, National 
Health and Nutrition Examination Survey (HANES), National Hospital Dis-
charge Survey, National Ambulatory Medical Care Survey, and National Nurs-
ing Home Survey. The results are published in Vital and Health Statistics, some-
times referred to (from its colorful covers) as the "rainbow series." Published 
results encompass a vast spectrum of medical care data, including incidence or 
prevalence rates for many diseases, length of hospital stays, hospitalizations by 
cause, number of days of disability, and patterns of ambulatory care service. 

Hospital and clinic records are a fair source of morbidity data. However, ex- 
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cept for prepaid medical plans, the population served by a hospital is hard to 
define. The Professional Activity Study of Battle Creek, Michigan, provides a 
uniform reporting system that is used by over 2000 hospitals nationwide. Re-
searchers use this system to make morbidity estimates for population studies. 
Hospital administrators find this and other resources to be invaluable for plan-
ning strategies of health care delivery. 

Chronic-disease registries are rapidly taking on a major role in the under-
standing of morbidity data. Most such registries are cancer-oriented (and are 
therefore termed cancer, or tumor, registries), although some are specialized for 
such diseases as cardiovascular disease, tuberculosis, diabetes, and psychiatric 
disease. A cancer registry is defined as a "facility for the collection, storage, 
analysis, and interpretation of data on persons with cancer." Some such reg-
istries are hospital-based; that is, they work within the walls of a hospital or 
group of hospitals. Others are population-based, in that they serve a population 
of defined composition and size. Among the best-known of the latter are the 
tumor registries of Connecticut and Iowa, each serving the entire state (Muir 
and Nectoux, 1977). 

Although we have focused on data for the United States, similar data are 
available for most of the developed world. They may be found in the annual 
Demographic Yearbook (United Nations, 1990). 

i.3 	 VITAL STATISTICS RATES, RATIOS, AND PROPORTIONS 

The field of vital statistics makes some special applications of rates, ratios, and 
proportions. A rate is an expression of the form 

[(a + bd c 
	

(15.1) 

where 

a = the number of persons experiencing a particular event during a 
given period 

a + b = the number of persons who are at risk of experiencing the particu-
lar event during the same period 

t = the total time at risk 

c = a multiplier, such as 100, 1000, 10,000, or 100,000 

The purpose of the multiplier, also referred to as the base, is to avoid the incon-
venience of working with minute decimal fractions; it also helps users to com-
prehend the meaning of a given rate. We usually choose c to give a rate that is 
in the tens or hundreds. 
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Three kinds of rates are commonly used in vital statistics: crude, specific, and 
adjusted rates. Crude rates are computed for an entire population. They disre-
gard differences that usually exist by age, sex, race, or some category of disease. 
Specific rates consider the differences among subgroups and are computed by 
age, race, sex, or other variables. Adjusted (or standardized) rates are used to 
make valid summary comparisons between two or more groups possessing dif-
ferent age (or other) distributions. 

A ratio is a computation of the form 

(
a

\ 	

(15.2) 

where a and c are defined as for rates, and d is the number of individuals expe-
riencing some event different from event a during the same period. Quite com-
monly used is the sex ratio; by convention, it places males in the numerator and 
females in the denominator. A ratio of 1.0 would describe a population with an 
equal number of males and females. 

A proportion is an expression of the form 

a 
a +  (15.3)  

where a, a + b, and c are defined as for rates. 

15.4 MEASURES OF MORTALITY 

A wide variety of rates, ratios, and proportions are based on numbers of deaths. 
Each rate is a measure of the relative frequency of deaths that occurred in a 
given population over a specific period. If we know the population and time at 
risk, we can compute a mortality rate. Unfortunately, these figures are some-
times difficult to obtain. A convention is used to define population size: the pop-
ulation at midyear (July 1). The figure obtained serves as a reasonable estimate 
of the population at risk (a + b) over the time (t) of one year. If this convention 
cannot be met, the calculation should preferably be termed a "proportion" rather 
than a "rate." 

In the health sciences, the fine distinctions among rates, ratios, and propor-
tions are often ignored. Consequently, you may find that some sources erro-
neously term certain ratios as "rates"; the most common of these are starred (*) 
in the discussion that follows. Some proportions are similarly misnamed "rates"; 
these also are starred. 



Section 15.4 / Measures of Mortality 	 247 

Annual Crude Death Rate 

The annual crude death rate is defined as the number of deaths in a calendar 
year, divided by the population on July 1 of that year, the quotient being multi-
plied by 1000. 

n EXAMPLE 1 

California, 1987—population: 27,663,000; deaths: 210,171. 

Crude death rate = 
210, 171

X 1000 
27,663,000 

= 7.6 deaths per 1000 population per year n 

The annual crude death rate is universally used. It is indeed crude—a gener-
alized indicator of the health of a population. In our example, the rate of 
7.6 deaths per 1000 is a bit less than the overall U.S. death rate of 8.7. But it is 
often incautious to make such a comparison, especially when the two popula-
tions are known to differ on important characteristics such as age, race, or sex. 
More appropriate comparisons are made by use of adjusted rates. The process of 
adjustment is a bit involved; we deal with it later. In the meantime, there is an-
other way of making fair comparisons between groups—by use of specific rates. 
Death rates may be specific for age, for sex, or for some particular cause of death. 

Age-Specific Death Rate 

The age-specific death rate is defined as the number of deaths in a specific age 
group in a calendar year, divided by the population of the same age group on 
July 1 of that year, the quotient being multiplied by 1000. 

n EXAMPLE 2 

United States, 1987—age group: 25-34 years; population: 43,513,000; deaths: 
57,701. 

57,701  
Age-specific death rate = 	 X 1000 

43,513,000 

= 1.3 deaths per 1000 population per year for age 
group 25-34 n 

Cause-Specific Death Rate 

The cause-specific death rate is defined as the number of deaths assigned to a 
specific cause in a calendar year, divided by the population on July 1 of that 
year, the quotient being multiplied by 100,000. 
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n EXAMPLE 3 

United States, 1987—cause: accidents; population: 243,827,000; deaths: 94,840. 

94,840 
Cause-specific death rate = 	 x 100,000 

243,827,000 

= 39.0 accidental deaths per 100,000 population 
per year n 

Cause-Race-Specific Death Rate 

The cause-race-specific death rate is one of many possible examples of how the 
idea of specific death rates may be extended simultaneously to cover two 
characteristics. 

n EXAMPLE 4 

United States, 1987—white male population, 100,589,000; nonwhite male popu- 
lation, 17,942,000. 

The full data for this example are given in Table 15.1. Note the difference in 
the death rate between the two racial groups. But the underlying explanation 
for the difference may be something other than race. What other factor might 
explain the difference? n 

Table 15.1 Cause—Race-Specific Death Rate, United States, 1987 

White Males Nonwhite Males 

Population 100,589,000 17,942,000 
Deaths assigned to accidents 53,936 10,880 
Cause—race-specific death rate per 100,000 53.6 60.6 

*Proportional Mortality Ratio 

Proportional mortality ratio is defined as the number of deaths assigned to a 
specific cause in a calendar year, divided by the total number of deaths in that 
year, the quotient being multiplied by 100. 

n EXAMPLE 5 

United States, 1987—total deaths from all causes: 2,123,000; deaths assigned to 
malignant neoplasms: 476,927. 

476,927 
Proportional mortality ratio = 	 x 100 

2,123,000 

= 22.5% of total deaths per year from 
malignant neoplasms n 
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n EXAMPLE 6 

United States, 1987—persons 15-24 years old: 38,481,000; persons age 65 or 
over: 29,835,000. 

From the full data for this example in Table 15.2, you can see that this pro-
portion is useful as a measure of the relative importance of a specific cause of 
death. But though it is quite simple to compute, it should be used with caution 
because it is quite easy to misinterpret. For instance, the proportional mortality 
for accidental death here is much greater for young adults than for elderly per-
sons. Nevertheless, the death rate from accidents is higher for the elderly. This 
apparent dilemma disappears when you realize the numerical impact of the 
large number of deaths from all causes among the elderly. 

Table 15.2 Cause-Specific Death Rate, United States, 1987 

Persons Ages 
15-24 

Persons Age 
65 and Over 

Population 
Deaths—all causes 

38,481,000 29,835,000 

Number 38,023 1,509,686 
Death rate per 100,000 98.8 5,060.1 

Deaths—accidental causes 
Number 18,695 25,838 
Death rate per 100,000 48.6 86.2 

Proportional mortality—accidental causes (%) 49.2% 1.7% 

Proportional mortality is particularly useful in occupational studies as a 
measure of the relative importance of a specific cause of death. It suffers from 
not having a population base in the denominator. Although it does not pro-
vide a reliable population estimate as does the cause-specific death rate, it is 
valuable in making preliminary assessments when denominator data are not 
available. n 

The next five measures are concerned with events involved in pregnancy, 
birth, and infancy. Most are based on the number of live births. 

*Maternal Mortality Ratio 

The maternal mortality ratio is defined as the number of deaths assigned to 
puerperal causes (i.e., those related to childbearing) in a calendar year, divided 
by the number of live births in that year, the quotient being multiplied by 
100,000. 

n EXAMPLE 7 

United States, 1987—deaths assigned to puerperal causes: 253; live births: 
3,829,000. 
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253 
Maternal mortality ratio = 	 X 100,000 

3,829,000 
= 6.6 maternal deaths per 100,000 live births 

per year 

Note that this ratio has an inherent problem: It includes maternal deaths in 
the numerator but only live births in the denominator. Fetal deaths are not rep-
resented. Consequently, this practice has a tendency to inflate the ratio slightly. 
A second problem derives from multiple births. They inflate the denominator 
but do not affect the numerator. As such events are comparatively rare, the net 
effect would be a minor change to a ratio based on an otherwise large popula-
tion. n 

Infant Mortality Rate 

The infant mortality rate is defined as the number of deaths of persons of age 
zero to one in a calendar year, divided by the number of live births in that year, 
the quotient being multiplied by 1000. 

n EXAMPLE 8 

California, 1987—live births: 494,053; infant deaths: 4546. 

4546 
Infant mortality rate = 	 x 1000 

494,053 
= 9.2 infant deaths per 1000 live births per year n 

This rate has an inherent problem in those populations that are experiencing 
rapidly changing birthrates. As you can see from our example, the numerator 
includes some infants who died in 1987 but were born in 1986; and some of the 
infants born in 1987 would die in 1988. In a population with a stable birthrate 
(e.g., that of the United States or Western Europe), such differences are likely to 
cancel out; this is not the case in a population undergoing a sharp change in its 
birthrate. 

Neonatal Mortality Proportion 

The neonatal mortality proportion is defined as the number of deaths of 
neonates (infants less than 28 days of age) that occurred in a calendar year, di-
vided by the number of live births in that year, the quotient being multiplied by 
1000. 

n EXAMPLE 9 

California, 1987—deaths at age less than 1 year: 4546; deaths at age less than 
25 days: 2780; live births: 494,053. 
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2780 
Neonatal mortality proportion = 	 x 1000  

494,053 

= 5.6 neonatal deaths per 1000 live births 

Because this example shows that 61.1% [(2780/4546) x 100] of all infant deaths 
were neonatal, it underscores the importance of neonatal mortality: the great 
bulk of infant deaths occur in a relatively short period following birth. n 

Fetal Death Ratio 

A fetal death is defined as the delivery of a fetus that shows no evidence of life 
(no heart action, breathing, or movement of voluntary muscles) if the 20th week 
of gestation has been completed or if the period of gestation was unstated. 

The fetal death ratio is defined as the number of fetal deaths in a calendar 
year, divided by the number of live births in that year, the quotient being mul-
tiplied by 1000. Note that this ratio applies only to fetal deaths that occur in the 
second half of pregnancy. No reporting is required for early miscarriages. 

n EXAMPLE 10 

California, 1987—fetal deaths: 3477; live births: 494,053. 

3477 
Fetal death ratio = 	 x 1000 

494,053 

= 7.0 fetal deaths per 1000 live births n 

Regrettably, fetal deaths tend to be grossly underreported, so every fetal 
death ratio is an underestimate (McMillen, 1979). 

Perinatal Mortality Proportion 

The perinatal mortality proportion is defined as the number of fetal plus 
neonatal deaths, divided by the number of live births plus fetal deaths, the quo-
tient being multiplied by 1000. 

n EXAMPLE 11 

California, 1987—fetal deaths: 3477; neonatal deaths: 2780; live births: 494,053. 

3477  + 2780 
Perinatal mortality proportion = 	 X 1000 

3477 + 494,053 

= 12.6 perinatal deaths per 1000 fetal deaths 
plus live births n 
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15.5 	 MEASURES OF FERTILITY 

Measures of fertility are indispensable when approaching population control 
problems. They are particularly useful in planning maternal and child health 
services. These measures also help school boards plan their future needs for fa-
cilities and teachers. The two most common measures of fertility are the crude 

birthrate and the general fertility rate 

Crude Birthrate 

The crude birthrate is defined as the number of live births in a calendar year, di-
vided by the population on July 1 of that year, the quotient being multiplied by 
1000. 

n EXAMPLE 12 

California, 1987—live births: 494,053; population: 27,663,000. 

494,053 
Crude birthrate = 	 x 1000 

27,663,000 

= 17.9 live births per 1000 population per year n 

The crude birthrate, although quite commonly used, is a none-too-sensitive 
measure of fertility because its denominator includes both men and women. 
Strictly speaking, this measure cannot be a rate because only a fraction of the 
population is capable of bearing children. A more sensitive measure is the gen-
eral fertility rate. 

General Fertility Rate 

The general fertility rate is defined as the number of live births in a calendar 
year, divided by the number of women ages 15-44 at midyear, the quotient 
being multiplied by 1000. 

n EXAMPLE 13 

United States, 1987—live births: 3,829,000; number of women ages 15-44: 
58,012,000. 

3,829,000 
General fertility rate = 	 x 1000 

58,012,000 

= 66.0 live births per 1000 women ages 15-44 per year n 

This rate is more sensitive than the crude birthrate because its denominator 
includes only women of child-bearing age. 



Section 15.6 / Measures of Morbidity 	 253 

Other measures of fertility are age-specific fertility rates and age-adjusted fertil-
ity rates. Both can be used to make valid comparisons between different popu-
lation groups. 

i.6 MEASURES OF MORBIDITY 

At best, mortality data provide indirect means of assessing the health of a com-
munity. The underlying cause of death hardly provides an adequate picture of 
the countless illnesses and other health problems that exist in any community. 
Because morbidity is less precisely recorded than mortality, such data are diffi-
cult to analyze, but they are nonetheless useful in program planning and evalu-
ation. Many measures exist. We will discuss here three that deal with the fre-
quency, prevalence, and seriousness of disease. 

Incidence Rate 

The incidence rate is defined as the number of newly reported cases of a given 
disease in a calendar year, divided by the population on July 1 of that year, the 
quotient being multiplied by a convenient factor, usually 1000, 100,000, or 
1,000,000. 

n EXAMPLE 14 

California, 1987—new cases of AIDS reported to the State Health Department: 
4878; population: 27,663,000. 

4878 
Incidence rate = 	 x 100,000 

27,663,000 

= 17.6 new cases of AIDS per 100,000 population per year n 

*Prevalence Proportion 

The prevalence proportion is defined as the number of existing cases of a given 
disease at a given time, divided by the population at that time, the quotient 
being multiplied by 1000, 100,000, or 1,000,000. 

n EXAMPLE 15 

United States, 1988—number of men alive with AIDS: 27,598; population: 
120,203,000 men. 

27,598 
Prevalence proportion = 	 x 100,000 

120,203,000 

= 23.0 AIDS cases per 100,000 men n 
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*Case-Fatality Proportion 

The case-fatality proportion is defined as the number of deaths assigned to a 
given cause in a certain period, divided by the number of cases of the disease re-
ported during the same period, the quotient being multiplied by 100. 

n EXAMPLE 16 

United States, 1988—reported number of male AIDS cases: 27,598; deaths from 
the disease: 13,886. 

13,886 x 100  
Case-fatality proportion = 

27,598 

= 50.3% mortality among reported cases 
of AIDS n 

This proportion uses the relative number of deaths as an indicator of the se-
riousness of a disease. It is often used as a means of showing the relative effec-
tiveness of various methods of treatment. 

15.7 ADJUSTMENT OF RATES 

Crude rates can be used to make approximate comparisons between different 
populations. But the comparisons are invalid if the populations are dissimilar 
with respect to an important characteristic such as age, sex, or race. As we know 
so well, many diseases have quite different impacts on different groups: on men 
and women, on old and young persons, on blacks and whites. We would there-
fore hesitate to compare the death rate for Alaska, with its young population, to 
that of Florida, with its relatively old population. We can see in Table 15.3 that 
the crude death rate for Alaska is much lower than that for Florida. The real ex-
planation for this is that Alaska has many more young people than does 
Florida, and the death rate for a younger group is low. A good way to handle the 
comparison is to examine the corresponding age-specific death rates for the two 
states. In this example, Alaska had higher death rates than Florida for five of the 
six age groups. However, comparing a long series of age-specific rates is often 
quite cumbersome, especially if more than two populations are involved. To 
solve this an adjusted, or standardized, rate is used to make the comparison valid. 
Statistically, the adjustment removes the difference in composition with respect 
to age. 

There are two methods of adjustment: direct and indirect. The type of data 
available dictates the method to be used. But keep in mind that an adjusted rate 
is artificial in that it is a rate applied to a population with a hypothetical distri-
bution. Such rates do not at all reflect the actual rates of a population. They have 
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Table 15.3 Population Distribution and Age-Specific Death Rates for Alaska and Florida, 

1987 

Alaska 	 Florida 

Population 	 Population 

Age 
Group 

Number 
of 

Deaths Persons 0/0  

Deaths per 
100,000 
Persons 

Number 
of 

Deaths Persons 0/o  

Deaths per 
100,000 
Persons 

0-4 163 60,000 11.45 271.7 2271 812,000 6.75 279.7 

5-24 152 173,000 33.01 87.9 2296 3,093,000 25.73 74.2 

25-44 376 193,000 36.83 194.8 6958 3,450,000 28.70 201.7 

45-64 518 79,000 15.08 655.7 20,524 2,528,000 21.03 811.9 

65+ 845 19,000 3.63 4447.4 95,141 2,139,000 17.79 4447.9 

Total 2054 524,000 100.00 392.0 127,290 12,022,000 100.00 1,058.8 

SOURCE: 1990 Statistical Abstracts of the United States. 

real meaning only as relative comparisons. The numerical values of the ad-
justed rates depend in large part on the choice of the standard population. 

The Direct Method 

The direct method of adjustment applies a standard population distribution to 
the death rates of two comparison groups. The sum of the expected deaths for 
the two groups is then used to compute the adjusted death rate (dividing the ex-
pected deaths by the total of the standard population). For the direct method it 
is essential to have both the age-specific death rates for the populations being 
adjusted and the distribution of the standard population by age (or by whatever 
other factor is being adjusted). 

n EXAMPLE 17 

In Table 15.3, we see that the 1987 crude death rate per 100,000 population for 
Alaska was 392.0 and for Florida, 1058.8. But a close look at the age distribution 
discloses that Alaska had a higher percentage of its population in the younger 
age groups. This finding makes it essential to adjust the death rates of the two 
states in order to make a valid comparison. With the direct method, we can fig-
ure out what the death rate would be for each state if the age distributions of 
both populations were identical. An efficient way to make this calculation is to 
apply the U.S. standard population to both states and then compute the ex-
pected number of deaths for each state as if its population distribution were in-
deed the same as for the U.S. standard. 

To carry out this method, we use the U.S. standard million. This is a popu-
lation of 1 million persons that identically follows the age distribution for the 
entire United States, as shown in column 1 of Table 15.4. 
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Age-Specific 
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Table 15.4 Age-Adjusted Death Rates per 100,000 Population for Alaska and Florida (1987) 
Using the Direct Method and Based on the 1987 U.S. Standard Million 

0-4 75,080 271.7 204.0 279.7 210.0 
5-19 216,113 87.9 190.0 74.2 160.4 

20-44 400,170 194.8 779.5 201.7 807.1 
45-64 186,091 655.7 1220.2 811.9 1510.9 
65+ 122,546 4447.4 5450.1 4447.9 5450.7 

Total 1,000,000 7843.8 8139.1 

The specific steps involved in calculating the age-adjusted rate are as follows: 

1. Compute the expected number of deaths for the standard population by 
applying the age-specific death rates of the state. For Alaska, multiply col-
umn 1 by column 2, divide the product by 100,000, and enter the result in 
column 3. For Florida, multiply column 1 by column 4, divide the product 
by 100,000, and enter the result in column 5. 

2. Total the expected deaths in columns 3 and 5. You can see that if Alaska's 
population were distributed the same as the standard million, the ex-
pected number of deaths (given Alaska's known age-specific death rates) 
would be 7843.8. Similarly, the expected number of deaths for Florida 
would be 8139.1. 

3. Compute the age-adjusted death rate per 1000 by dividing the total ex-
pected deaths by 1000. For Alaska, the adjusted rate is 7.84, and for Florida 
it is 8.14. Remember the crude death rates (Table 15.3) were 3.92 for Alaska 
and 10.59 for Florida. 

The striking result: Florida's crude death rate was much higher than 
Alaska's. However, where based on a comparable population, the age-adjusted 
death rates were nearly the same for both states! n 

The choice of the standard population affects the values of the adjusted rates. 
Therefore, in comparing adjusted rates between different states or countries, 
you should know which standard population was used because different stan-
dards will yield different results. 

The Indirect Method 

The indirect method of adjustment is somewhat different from the direct 
method. It is utilized when age-specific death rates are not available for the 
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populations being adjusted, but when the age-specific death rates for the stan-
dard population are known. With this method, we compute a standard mortal-

ity ratio (SMR) (observed deaths divided by expected deaths) and use it as a 
standardizing factor to adjust the crude death rates of the given populations. 
The SMR increases or decreases a crude rate in relation to the excess or deficit of 
the group's composition as compared to the standard population. A detailed 
treatment appears in several textbooks. See, for instance, Remington and 
Schork (1985) or Lilienfeld, Pedersen, and Dowd (1967). Both this method and 
the direct method are as applicable to ratios and proportions as to rates. 

Conclusion 

Public health decision making is a quantitative matter. The health of a popula-
tion is assessed by use of its vital statistics and demographic data. Information 
about demographic characteristics is obtainable from census data, registration 
of vital events, and morbidity surveys. Such data are used to calculate vital rates 
and other statistics that are used to indicate the magnitude of health problems. 

Vital rates, ratios, and proportions are classified into measures of mortality 
(death), fertility (birth), and morbidity (illness). These measures may be crude 
or specific, the latter referring to calculations for subgroups selected for a com-
mon characteristic such as age, sex, race, or disease experience. Comparisons of 
vital rates, ratios, or proportions among different populations should be made 
with care and be validated by use of specific or adjusted measures. Choice of the 
adjustment method depends on the type of data available. 

Vocabulary List 

adjusted rate 
(standardized rate) 

base 
birth registration 
case-fatality proportion 
crude birthrate 
crude rate 
death registration 
decennial census 
demographic variables 
direct method of 

adjustment 
fetal death ratio 
general fertility rate 
incidence rate 

indirect method of 
adjustment 

infant mortality rate 
maternal mortality ratio 
Metropolitan Statistical 

Area (MSA) 
morbidity data 
mortality data 
National Health Survey 
neonatal mortality 

proportion 
perinatal mortality 

proportion 
population at risk 
prevalence proportion  

proportion 
proportional mortality 

ratio 
rate 
ratio 
specific rate 
standard mortality ratio 

(SMR) 
time at risk 
underlying cause of 

death 
U.S. standard million 
vital events 
vital statistics 
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Exercises 

Note: For all these exercises, use as appropriate the sources referred to in Section 
15.2. 

15.1 	 Find the size of the U.S. population (including those in the armed forces) for 
1970, 1980, and 1990. 

15.2 What was the population of New York State in 1970? In 1980? 

15.3 In 1987, how many Iowans were 
a. under 5 years old 
b. 65 or more years old 

15.4 What was the percentage of blacks living in 1987 in Minnesota? In Georgia? 

15.5 In 1987, what were the birth and death rates for Alaska? For Kansas? 

15.6 For the United States during 1987, what were the five leading causes of death? 

15.7 What were the maternal mortality ratios for U.S. whites and nonwhites in 1950? 
In 1980? 

15.8 What were the death rates from cirrhosis of the liver by sex and race (white and 
nonwhite) for the United States in 1987? 

15.9 What were the numbers of total deaths, infant deaths, and neonatal deaths, by 
place of residence, for two California counties, Riverside and San Bernardino, in 
1987? 

15.10 a. For 1987, compute the crude birthrates for Alaska and for Arizona. 
b. What do you observe about the birthrates of these two states? What are some 

possible explanations? 

15.11 Find the state death rate for Hawaii and Nevada. Which state had the highest 
birth and fertility rates in 1990? 

15.12 Obtain the sex-specific death rates from cirrhosis of the liver for males and fe-
males in 1993 for the United States. 

15.13 Obtain the following cause-specific death rates for Michigan, Utah, Tennessee, 
and the United States for cancer, heart disease, accidents, and diabetes in 1993. 

15.14 Obtain the population size and number of deaths due to cancer in Tennessee for 
1980 and 1990. 

15.15 Find the states with the three highest HIV death rates in 1993. 



6 Life Tables 

Chapter Outline 

16.1 Introduction 
Discusses life tables, used by demographers and researchers to de-
scribe the mortality or longevity of a population 

16.2 Current Life Tables 
Analyzes a current life table 

16.3 Follow-up Life Tables 
Describes a neat technique for tracking survival of patients with 
chronic diseases 

Learning Objectives 

After studying this chapter, you should be able to 

1. Distinguish among the three types of life tables 

2. Identify and be able to compute the components of a current life table 

3. Compute measures of mortality and longevity from a life table 

4. Construct a follow-up life table 

i.1 	 INTRODUCTION 

Life tables have been in use for centuries. The first systematic, if inexact, life 
table was developed by British astronomer Edmund Halley (of Halley's comet 
fame) to describe the longevity of residents of seventeenth-century Breslau. In 
1815, Joshua Milne published the first mathematically accurate life table, which 
described the mortality experience of a city in northern England (Shyrock and 
Siegel, 1973). 

Life tables are now in general use and have many important applications. For 
instance, they are used by demographers to measure and analyze the mortality 
or longevity of a population or one of its segments; by insurance companies to 
compute premiums; and by research workers to determine whether the differ-
ences in mortality or longevity of two groups are different. They are employed 
to predict survival or the likelihood of death at any time. A life table analysis 
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can be fundamental to the solution of many public health and medical prob-
lems. 

Three types of life tables are in general use. They are the current li fe table, the 
cohort, or generation, life table, and the follow -up, or modified, life table. Current 
and follow-up life tables are the most common and will be discussed in some 
detail. 

The current life table illustrates how age-specific death rates affect a popu-
lation. Such a table considers mortality rates for the entire population for a 
given period. For instance, a 1979-1981 life table considers the mortality of the 
various age groups over three years. It does not follow the mortality experience 
of a single age group throughout its life. Three years are used in preference to 
one year because this span tends to stabilize the death rates, which otherwise 
would be unduly sensitive to year-by-year fluctuations. 

By contrast, the cohort life table follows a defined group (cohort) from birth 
(or some other measurable point in time) until the last person in the group has 
died, which is why it is also known as a generation life table. The key differ-
ence between the current life table and the cohort life table is that the former 
generates a fictitious pattern of mortality, whereas the latter presents the histor-
ical record of what actually occurred. 

Because there are usually major differences in the patterns of mortality 
among various subgroups of a population, life tables are quite commonly con-
structed for specific groups: by race, sex, occupation, or specific diseases. 

An interesting extension of the life-table idea has come into general use in re-
cent years. Life tables may be employed for studies wherein the outcome vari-
able is an event other than death. For example, an outcome could be recurrence 
of coronary heart disease, a contraceptive failure, or time from driver's license 
application to first reported accident. An illustration of the recurrence of cancer 
as an outcome variable appears in Kuzma and Dixon (1986). Furthermore, the 
follow-up, or modified, life table has been used recently by medical re-
searchers. They have adopted its use to determine the survival experience of pa-
tients with a particular condition. 

16.2 	 CURRENT LIFE TABLES 

To demonstrate the many applications of a current life table, we will use an 
abridged life table for the 1987 U.S. population. Table 16.1 illustrates what 
would have happened to a hypothetical population of 100,000 persons as it 
passed through time—that is, how many persons would have died and how 
many would have survived in each particular age group if they spent their en-
tire lifetimes exposed to the 1987 mortality rate. The table also indicates the 
probability of dying during any age interval, the probability of surviving to a 
particular age, and the average life expectancy. The table is abridged for 
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convenience, most of the age intervals covering five-year periods. A complete 

life table would have a separate entry for each year. 
By systematically dissecting a life table, we can gain some valuable insights 

into what it means and how it works. We will begin by discussing the several 
columns of Table 16.1. 

Age Interval [x to (x + n)] 

The age interval is the period between the two exact ages stated. For example, 
35-40 means the five-year span between the 35th birthday and the 40th. 

Age-Specific Death Rate (nmx) 

The symbol n mx  denotes the average annual age-specific death rate for the age 
interval stated; that is, x denotes the beginning of the interval and n denotes 
the width. The numerator for this rate is the average number of deaths per year 
in a three-year period (1986-1988), divided by the July 1 average population 
for 1986, 1987, and 1988. For example, the age-specific death rate for age group 
35-40, 5m 3 5, is .0018554, or about 1.9 per 1000. 

Correction Term (flax) 
We need a correction term for a very simple reason. Among tiny infants, most 
deaths occur early in the first year, whereas among adults deaths are fairly uni-
formly distributed throughout the year. The correction term defines and adjusts 
for the maldistribution. The „ax  column shows the average fraction of the age in-
terval lived by persons who die during that interval. Notice that 5a35 is .54, a 
shade more than half a year. Values for „a, are computed by use of a complex 
equation discussed in advanced treatments of this topic such as in Chiang 
(1984). 

Corrected (Estimated) Death Rate („i/) 

The symbol „ci, denotes the proportion of those persons who are alive at the 
beginning of the age interval but die during that interval. For example, the prob-
ability that a 35-year-old will die before reaching 40 is 51/35 = .0092. The com-
puting formula for „ "qx. is 

n • „rn, 
AX 1  ± (1 - „a) • n „m, 

Number Living at Beginning of Age Interval (Is) 
We use 1, to indicate the number of persons, starting with the original cohort of 
100,000 live births, who survive to the exact age marking the beginning of each 
interval. Each 1, value is computed by subtracting the „cc (number dying during 
interval) for the previous age interval from the l for that interval—that is, 
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IX -1-  11 	 IX 
(16.1) 

Thus 

135 = 1 30  — 5  d 30  = 96,946 — 707 = 96,239 

Number Dying During Age Interval („dx) 

The number of persons of the original 100,000 who die during each suc-
cessive age interval is denoted by n dx . It is calculated by applying the 
proportion dying (A%) during the interval to the number alive (/ x) at 
the beginning of the interval. 

„d„ = (l x)(jx) 	 (16.2) 

For example, 

5d30 = (130)(5430) = 96,946(.0072968) = 707 

Person Years Lived in Interval („LA) 

The symbol Ix  designates the totality of years lived by the survivors of the orig-
inal 100,000 (the 1) between the ages x and (x + n). For example, 5L30  = 483,035 
is the number of person -years lived by the 96,946 (130) alive at the beginning of 
the 30th year. It is computed by the equation 

„Lx = n[l xxn  + (n a x)(n dx)] 	 (16.3) 

for all intervals except the last, for which 

So 

L — 
nmx 

5  L 30 	 5[1 35 	 (030)(5  d30 )1 

(16.4) 

= 5[96,239 + (.52)(707)] 

= 483,033 

Sometimes the „L, column of the life table is termed the stationary popula-
tion. Given the hypothetical assumption that the number of births and deaths 
remains constant each year, the number of person-years would in fact be un-
changing, hence the term. This idea is useful in certain applications to studies of 
population structure. 
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Total Number of Person Years (Tx) 

The symbol T1  denotes the total number of person-years lived by the 1, sur-
vivors from year x to death. It is obtained by cumulating the person-years lived 
in the intervals („L,): 

To  = 1 L 0  + 4 L i 	 5 L 5  + • • • + 5 L 80  + 5 L 85  = 7,510,914 

Expectation of Life (ex) 
Because of its general usefulness, Ox  may be the most valuable feature of the life 
table. It denotes life expectation, the average number of years of life remaining 
to those who survive to the beginning of the age interval. It is calculated by di-
viding the number of person-years lived after a given age (T,) by the number 
who reached that same age (lx): 

(16.5) 

The future life expectancy for a 35-year-old, for example, is calculated by 
035  = T35/135  = 4,079,654/96,239 = 42.4 years; that is, on average, persons reach-
ing age 35 may expect to live to 35 + 42.4 = 77.4 years. 

A life table enables us to compute some special measures of mortality that are 
real improvements over the use of general rates. One of these measures is the 
expectation of life at age 1, which removes the considerable impact that infant 
mortality has on life expectation from birth. Another is the expectation of life at 

age 65, which zeros in on the mortality of the older ages when most deaths 
occur. Still another is the probability of surviving from birth to age 65, which is de-
fined as 

D 	 165  
65 1  0 

1 0 

An interesting measure is the median age at death, which is the age to which 
precisely half of the cohort survives. It corresponds to the age x at which 

= 50,000 in a life table based on a cohort of 100,000 persons. By interpolation 
from Table 16.1, we would estimate the median age at death as 78.5 years. 

A commonly used survival rate in population studies is 

I v+ n 
nPx 

t x  

(16.6) 

the probability of surviving from year x to year x + n. For example, using 
Table 16.1, we can calculate the proportion of newborn babies who will reach 
their tenth birthday: 
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/ 10  	 98,669 
98669 

1 " P° 	 1„ 	 100,000 

Similarly, the proportion of newborns who will reach their first birthday is 

i po  =- 11  -= 
98 ,992 

= .98992 
/ 0 	 100,000 

and the probability that a 25-year old will survive 10 more years is 

/ 35 	 96,239 	 .
98667 10P25 	 / 25 	 97,539  

Not surprisingly, we can follow the same pattern to compute probabilities of 
death. The probability that a 25-year-old will die before reaching age 30 is 

5c125 	 593 = .00608 
5°125 	 / 25 	 97,539 

Note that /, may be thought of as a cumulation of the age-specific death rates up to 
(but not including) age x. In other words, it shows the net effect of all death rates 
up to that age, whereas life expectation, e„ shows the effect of the age-specific 
death rates after that age. 

We already mentioned that the current life table considers a hypothetical co-
hort. The assumption is that the cohort is subject throughout its existence to 
those age-specific mortality rates that were observed for one particular period. 
However, specific rates actually vary with time. Although little variation occurs 
from one year to the next, significant changes are common over long periods. 
Table 16.2 illustrates the point for U.S. white males for the years 1900-1980. 
Note that most of the improvement in longevity has occurred under age 65, and 
especially in the first year of life. 

Table 16.2 Changes in the Mortality of White Males in the United States According to 
Various Life Table Measures, 1900-1980 

Base Period for Life Table* 

Measure 1900 1910 1920 1930 1940 1950 1980 

Expectation of life at birth 48.2 50.2 56.3 59.1 62.8 66.3 73.6 
Expectation of life at age 1 54.6 56.3 60.2 62.0 65.0 67.1 73.6 
Expectation of life at age 65 11.5 11.3 12.2 11.8 12.1 12.8 16.4 
Probability of surviving from 

birth to age 65 .39 .41 .51 .53 .58 .64 .77 
Median age at death of initial cohort 57.2 59.3 65.4 66.4 68.7 70.7 77.1 

*Life tables for periods before 1929-1931 relate to those states that required death registration. 
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Demographers make an important distinction between life span and life ex-
pectation. A life span of "four score years and ten" has been well known from 
time immemorial. Although inexact, life span is the age that persons are likely 
to reach, given optimum conditions. Life span could be defined as that age 
reached by the longest-lived 0.1 0 0 of the population, which would currently be 
quite close to 100 years (Shyrock and Siegel, 1973). Life expectation has in-
creased not so much by virtue of a longer life span as by reduction of infant 
mortality, and thus an increase in the average years of life. 

163 	 FOLLOW-UP LIFE TABLES 

"How long do I have?" is often the first question a patient asks the physician 
when told that he or she is suffering from a life-threatening chronic disease. The 
follow-up life table (or modified life table) provides a basis for answering this 
difficult question. Chronic-disease registries, especially cancer registries, make 
regular use of the follow-up table to track the survival of patients over time. In 
this connection, life tables are often used to evaluate the relative effectiveness of 
alternative modes of treatment by computing the probability of survival of pa-
tients treated by each mode. 

The follow-up table is particularly useful because it utilizes the experience of 
each person for the entire time he or she was in the study; that is, the method 
considers the period of exposure in terms of person-years or other appropriate 
units. 

Life tables may be calculated for a cohort in which all the members start the 
study at the same time or for one in which the members are admitted to the 
study at different times over a period of years. In either case, the data are han-
dled identically, providing that (1) death rates do not change materially over 
time, and (2) exposure to the disease prior to treatment is not increasing with 
time. 

Construction of a Follow-up Life Table 

To construct a follow-up life table, you will need to know the period of follow- 
up after some event, such as a heart attack, diagnosis of cancer, or surgery. To 
ensure accuracy, you need well-defined starting and end points. Given a known 
period of observation for each patient, you can then tally how many survive, 
how many die, and how many are lost to follow-up during the first and subse-
quent years of the study. 

The construction of such a table is illustrated in Table 16.3 with data from a 
cancer follow-up study. A total of 356 (/ 0) patients began the study. During the 
first year of follow-up, 60 (d o) patients died. Thus, the probability of surviving 
the first year was p , = (356 — 60)/356 = .8315. During the second year, of the 
296 patients remaining, 47 died; 1 was lost to follow-up. By convention, it is as- 
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sumed that a person who is lost to follow-up (f,) or who withdraws from the 
study alive (w y) lives through half the interval. Consequently, the effective num-
ber exposed to the risk of dying is here estimated as 1X = 296 — .5 = 295.5. The 
probability of surviving the second year of follow-up is then estimated as 

1; — d 2 	 295.5 — 47 
= 	 = .8409 

2  295.5 
(16.7) 

The probabilities of surviving successive years are computed similarly. The 
equation for the effective number exposed to the risk of dying may be summa-
rized as 

	

1, — .5(w, + fx) 	 (16.8) 

Having found the probabilities of survival for each individual year, we can now 
easily compute the probability of surviving several years. For example, the 
probability of surviving the first two years is P02  = (p i )(p2), and the first five 
years is P05  = (P1)(P2)(P3)(P4)(P5). 

The five-year survival rate is commonly used in cancer research as a measure 
of a treatment's effectiveness. Differences between survival rates of two groups 
are tested by means of a t test, which implies the need to know standard errors. 
For a detailed discussion of two different methods of preparing a life table, see 
Kuzma (1967). 

Some special problems in calculating survival rates occur when persons are 
lost to follow-up or withdraw alive (i.e., persons are known to be alive at the be-
ginning of the time interval, but their fate is unknown at the end). Numerous 
suggestions have been offered on how to handle these problems. For instance, 
if the proportion of such cases is small, the assumption is made that each case 
was lost or withdrew at the middle of the last known interval. Thus, the con-
vention is that such cases are considered to be alive for half of the last interval 
during which they were observed. 

Clinical trials frequently utilize life tables to estimate survival rates. It is often 
necessary to determine whether there is a statistically significant difference be-
tween PL, the xth year survival rate of a treatment group, and 1)0„, the xth year 
survival rate of a control group. The equation used is 

Z — 	 PO., 	 Pox   	 (16.9) 
V SE(PL) 2  + SE(Pox) 2  

where SE(1)0',) and SE(Pox) are standard errors for the two groups and Z is the 
normal deviate. 

A rigorous justification for the standard-error equation is beyond the scope 
of this book. However, an approximation suggested by M. Greenwood as de-
scribed in Cutler and Ederer (1958) is as follows: 
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sE(P„,) = Po, E (1 , 
d, 

0(1, — )x 

(16.10) 

where x is summed from x = 0 to x = n; that is, through the interval prior to 
that containing Pox. 

We illustrate the computation of the standard error of Po5  using the data from 
Table 16.3: 

60 	 47 	 29 24 	 11  SE(P05) = .4412 	 + 	
+ (356)(296) 	 (296)(249) 	 (248)(215) 	 (214)(189.5) 	 (145)(109) 

= .4412 V.0005693 + .0006376 + .0005438 + .0005918 + .0006959 
(16.11) 

= .4412 V.0030384 = .4412(.055122) 

= .02432 

Using the value of the standard error, it is now possible to compute the z 
statistic. 

Conclusion 

Life tables provide excellent means for measuring mortality and longevity. The 
current life table shows the effects of age-specific death rates on a group. From 
this table, measures of mortality and life expectation can be computed. Whereas 
the current life table presents a hypothetical picture of the effects of present 
mortality rates, the cohort life table is an actual historical record of the mortal-
ity of a group followed through life. The follow-up life table considers the ex-
perience of persons from event to event during the period of a study. 

Vocabulary List 

abridged life table 
age interval 
cohort 
cohort life table 

(generation life table) 
complete life table 

current life table 
five-year survival rate 
follow-up life table 

(modified life table) 
life expectation 
life span 

life table 
median age at death 
person-years 
stationary population 

Exercises 

	

16.1 	 Table 16.4 is an incomplete abridged life table for the U.S. population (1980). 
Complete the table by filling in the blanks. 

	

16.2 	 A distinguished citizen is celebrating his 75th birthday. Use Table 16.1 to com- 
pute the probability that he will live to celebrate his 80th. 

In Exercises 16.3 through 16.9 use your completed life table from Exercise 16.1. 
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16.3 	 Calculate the probability at birth of living to be 80. 

16.4 Compute the following proportions: 
a. all persons dying between birth and the first birthday 
b. all persons dying between birth and the fifth birthday 
c. babies born alive dying between birth and the fifth birthday 

16.5 Find the proportion of 
a. all persons dying between the ages of 35 and 45 
b. 35-year-olds dying between the ages of 35 and 45 

16.6 What is the probability that a person aged 20 will survive until age 65? 

	

16.7 	 Find the expectation of life at birth, at 1 year, at 35 years, and at 75 years of age. 

16.8 Find the proportion of 70-year-olds dying between the ages of 70 and 75. Com-
pare this figure with that found in Exercise 16.4c and explain the difference. 

16.9 Why are the results of (b) and (c) of Exercise 16.4 the same and the results of (a) 
and (b) of Exercise 16.5 different? 



17 The Health Survey and the 
Research Report 

Chapter Outline 

17.1 Planning a Health Survey 
Presents an outline for a survey with a brief discussion of the steps 
involved 

17.2 Evaluation of a Research Report 
Lists and discusses steps for evaluating a medical report 

Learning Objectives 

After studying this chapter, you should be able to 

1. Prepare an outline for a health survey 

2. Be prepared to critically evaluate a medical report 

17.1 	 PLANNING A HEALTH SURVEY 

So far in this book we have discussed the kinds of statistical topics generally 
covered by most introductory statistics textbooks. In this section, we consider 
the survey, one of two research tools that are indispensable to persons who deal 
with data and statistics. In the next section, we discuss the second tool, the eval-
uation of research articles. The coverage of both topics is all too brief since each 
could itself be the subject of a good-sized book. 

Health surveys are conducted for a number of reasons, but most often they 
are undertaken to determine the health needs of a community. Subjects of a 
health survey are members of the general public, all of whom are, to some de-
gree, users of health services. In the same sense that people consume gasoline, 
stockings, and corn flakes, they are regarded as consumers of health services. 

What constitutes a health survey? Many things. For instance, health surveys 
may entail inquiries into the consumer's knowledge, attitudes, and practices, 
his or her utilization of health services, disease experience in the past, and sat-
isfaction (or dissatisfaction) with health service delivery; or they may involve 
research directed ultimately toward elucidating the etiology of a disease or 

272 
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evaluation of a program's su zcess. All these points are generally focused in one 
direction: toward aiding the decision-making process of health service (or pub-
lic health) managers. 

The goal of most researchers is to be able to conduct a survey that clearly and 
accurately describes some health-related phenomenon. But caution is advised; 
a health survey can be a tricky business. Unless it follows a prescribed stepwise 
procedure (like the one we outline here), a survey could produce faulty infor-
mation leading to unfortunate (possibly grave) consequences. An example of a 
report with an intriguing finding—that left-handed people have a shortened 
life expectancy—was reported in the New England Journal of Medicine. With time, 
we will learn how well it stands up to careful scientific scrutiny. 

Immediately after the following outline, each step will be briefly described. 

Outline for Planning a Health Survey* 

1. Make a written statement of the purpose of the survey. 
2. Write out the objectives and hypotheses. 
3. Specify the target population. 
4. List the variables to be measured. 
5. Review existing pertinent data. 
6. Outline the methods of data collection. 
7. Establish the time frame. 
8. Design the questionnaire. 
9. Pretest the questionnaire. 

10. Select subjects for the sample. 
11. Collect the data. 
12. Edit, code, and enter the data on a computer and verify the data entry. 
13. Analyze the data. 
14. Report the findings. 

Step 1: Make a Written Statement of the Purpose 

The purpose of your survey should be well thought out, carefully defined, and 
clearly stated in two or three sentences. This step will aid your own thinking 
and will help you in carrying out the subsequent steps. Without it, a survey is 
doomed to failure. 

*Credit for this outline goes to Dr. David Abbey, a survey statistician who developed it for a course 
on Health Survey Methods. 
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Step 2: Formulate Objectives and Hypotheses 

A descriptive survey seeks to estimate one or more characteristics of a popula-
tion. That, quite simply, is its specific objective. An analytical survey seeks to ex-
amine relationships among some specified characteristics. To carry it out, you 
need to define the hypotheses to be tested. 

Step 3: Specify the Target Population 

The target population is that group of people from whom inferences are to be 
drawn. This population may well be restricted to one from which the investiga-
tor may feasibly draw a sample. To test your research hypothesis, it is essential 
to estimate certain key characteristics of individual members of the target pop-
ulation. In statistical sampling, an individual member of a population is often 
referred to as an element. But in health surveys the element may be a person, a 
mother—child pair, or some logical group of persons such as a household. Mea-
surements are taken on the element. The population can be defined as the col-
lection of all elements. 

Once your target population is defined and elements are identified, list the 
variables that are to be assessed on each element. For example, a target popula-
tion might be all the students enrolled in a college course who successfully 
stopped smoking during the last 12 months. The element would be each mem-
ber of the class possessing that characteristic; variables measured might be age, 
sex, amount of smoking, and number of years of smoking before quitting. 

Step 4: List the Variables 

There is an endless list of potential variables that you may wish to measure. In 
general, the researcher focuses on personal characteristics of individual mem-
bers of the target population. Such characteristics could be a person's weight, 
blood pressure, age, race, smoking status, and so on. The variables considered 
should be potentially measurable on each person. In a health survey, one usu-
ally wants to collect information both on outcome variables and on concomitant 
variables. The latter are those covariables that, although themselves uncontrol-
lable, may well affect the outcome. All variables should be clearly defined dur-
ing the planning stages. 

Step 5: Review Existing Data 

It is important to review current literature on the topic being surveyed so that 
you can determine the state of the art, current hypotheses, those variables re-
garded as pertinent, and the likely success of your chosen strategy. It is often 
advisable to use standardized questions for which ample documentation of 
validity and reliability exists. And by using the standard wording of standard-
ized questions, you will be able to compare results with those of well-known 
studies. 
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Step 6: Decide How to Collect Data 

In collecting data, there are numerous methods to choose from, each of which 
has certain advantages and disadvantages. The person-to-person interview is 
often regarded as the industry standard because of the high response rate. The 
interviewer, being at the scene, can make additional observations regarding 
subtle aspects of the interviewee's behavior; these may be used to help validate 
the interview. But this approach is costly; an alternative is the telephone inter-
view (using random-digit dialing), which can be performed at approximately 
half the cost and produce essentially similar results. But telephoning introduces 
a new potential bias in that it excludes approximately 10% of the households— 
those that do not have a telephone or have an unlisted number. Still another ap-
proach is the mailed questionnaire. This costs less than person-to-person or 
telephone interviews and may be done anonymously. Mailed questionnaires 
rule out the problem of interviewer bias; the respondent is less likely to be de-
fensive about answering socially sensitive questions. But this approach does 
have a serious drawback: poor response rates. It usually requires at least two 
follow-up mailings to obtain a satisfactory number of responses. Other prob-
lems include uncertainty as to whether the intended person actually completed 
the questionnaire, plus nagging doubts as to whether the respondents are truly 
representative of the target population. 

Step 7: Establish the Time Frame 

It is necessary to establish a time frame to realistically schedule survey events. 
The schedule should not be so tight as to jeopardize succeeding steps in case of 
a delay in preceding events. Plan for backup procedures and personnel to avoid 
major delays. It is a good idea to have some trained interviewers on call. 

Step 8: Design the Questionnaire 

Questions need to be carefully worded so as not to confuse the respondent or 
arouse extraneous attitudes. The questions should provide a clear understand-
ing of the information sought. Be precise; avoid ambiguity and wording that 
might be perceived to elicit a specific response. Questions may be open-ended, 
multiple choice, completion, or a variation of these. You should studiously 
avoid overly complex questions. The key principles to keep in mind while con-
structing a questionnaire are that it should (1) be easy for the respondent to 
read, understand, and answer; (2) motivate the respondent to answer; (3) be de-
signed for efficient data processing; (4) have a well-designed professional ap-
pearance; and (5) be designed to minimize missing data. 

Step 9: Pretest the Questionnaire 

It is never possible to anticipate in advance all the potential problems that may 
occur when you administer a questionnaire. So it is important to pretest it. A 
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pretest will identify questions that respondents tend to misinterpret, omit, or 
answer inappropriately. It should be done on a handful of individuals similar 
to, but not included in, the target population and should utilize the same 
methodology that will be used in the actual survey. 

Step 10: Select the Sample 

You should select the sample in such a way that valid statistical inferences can 
be drawn regarding the target population. You wish to obtain a representative 
sample, one that minimizes sampling bias and is designed for economy in op-
eration. A variety of sampling designs are available: simple random, systematic 
random, stratified random, and multistage sampling. To determine the most 
appropriate design for a complex survey, consult a survey statistician. 

Step 11: Collect the Data 

With a completed and pretested questionnaire, you are ready for data collec-
tion. This step requires careful planning and supervision to ensure data of good 
quality. You want to attain the following objectives: maximize the response rate 
by minimizing nonresponses, keep track of the nonrespondents, obtain some 
information on nonrespondents, avoid duplication, avoid failing to contact part 
of the sample, protect confidentiality of the data, provide anonymity, and main-
tain a cooperative spirit in the target population. Interviewers should be well 
trained and coached in regard to how to approach the respondents, how to con-
duct the interview, how to handle various answers, and how to inform respon-
dents about what is expected of them during the interview. 

Step 12: Edit and Code the Data 

Editing of data is analogous to editing newspaper copy. The editor's job is to 
make sure that the text meets certain standards and that errors are corrected. 
The editor checks for missing data, for inconsistencies, and for problems that 
can be remedied. Editing of data should be done as soon as possible after data 
collection. 

To permit computerized analysis of data, it is essential that the variables be 
reduced to a form in which a numerical value may be assigned to each possible 
choice. This process is referred to as coding. It is carried out simultaneously 
with editing. Coding may be done either by use of an ad hoc coding system speci-
fically developed for your own data base or by use of a standard coding system. 
A well-accepted technique for the coding of diseases or causes of death is the In-
ternational Classification of Diseases (World Health Organization, 1977). This 
flexible system can provide either a broad categorization of disease groups or 
quite detailed coding of specific entities. For years, the standard procedure was 
to use punch cards for computer entry. The current method of choice is to enter 
data directly via an interactive terminal. In this way, a validation program is 
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able to inform the key-entry operator immediately about possibly invalid data. 
To maintain accuracy, it is essential that, by program or otherwise, the data 
entry be verified. 

Step 13: Analyze the Data 

After data have been collected, edited, coded, and key-entered, they are almost 
ready for analysis. But a preliminary step is needed: some advance data analy-
sis to ferret out possible outliers, look at the distribution of the various vari-
ables, provide an item analysis for the variables of special interest, and assess 
the amount of missing data. Once this analysis is completed, you are ready to 
perform the major analysis of data, a task dictated by the specific objectives of 
the survey. 

Step 14: Report the Findings 

The report should begin with background information that provides a rationale 
for the study. It should indicate the specific objectives that the survey seeks to 
accomplish. A "methods" section should describe the target population, the test 
instruments, and the sampling design. The "results" section should discuss the 
findings and possible future implications. 

7.2 	 EVALUATION OF A RESEARCH REPORT 

It is quite unlikely that all the users of this book will become regular producers 
of research literature. But, almost without exception, everyone will be a con-
sumer of such literature. Research literature comes in many forms: books, jour-
nal articles, monographs, administrative documents, program evaluations, and 
the like. 

A valuable skill to develop is the ability to critically read and evaluate re-
search literature. Without this, a person is unable to differentiate between a 
pedestrian report and one of quality. A top-grade report stands unshaken under 
the critical process of peer review. In a sense, every user of literature, by doing 
a critical analysis, is carrying peer review to its ultimate step. 

It is a well-known, if regrettable, fact that some research literature is of poor 
quality. After wading through a mire of jargon, inconsistencies, poor grammar, 
tangles of qualifications, and some muddy logic, the user is expected to draw a 
brilliantly clear scientific conclusion. This problem is chronic in much scientific 
writing. A full discussion is well beyond the scope of this book. See one of the 
several excellent treatments of the subject (for example, Flesch, 1974; Sheen, 
1982). 

A parallel problem exists when dealing with the quantitative aspects of a re-
port. We hope that by reading this section you will gain at least a glimmer of 
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how to be critical, analytical, and discriminating in your use of research litera-
ture. 

Researchers, being human, must exercise constant vigilance to avoid bias 
while working toward a prized objective. As mentioned briefly in Chapter 1, 
bias may well creep in—usually inadvertently, perhaps subconsciously, and 
often as a consequence of some aspect of the research design. Although the best 
researchers are carefully trained in its avoidance, bias assumes so many forms 
that it is difficult to recognize and avoid them all. By examining a few of these, 
we should be more capable of effectively evaluating a research report. For a 
comprehensive catalogue of research bias, see Sackett (1979). 

Observer Bias 

When the observer (or interviewer) is fully aware that the person being inter-
viewed has a certain disease, the observer may subconsciously attribute certain 
characteristics to the subject. The result of this observer bias is that those char-
acteristics are more likely to be recorded for cases than for controls. The solution 
of choice is to "blind" the observer as to whether the subject is a case or a 
control. 

Sampling Bias 

Bias may enter whenever samples are chosen in a nonrandom fashion. Conve-
nience sampling (choosing only subjects who are easy to find) leads almost in-
variably to biased results. Systematic sampling (choosing every nth person 
from a list) carries the potential of subtle error, especially if the list has some 
cyclical pattern. Telephone and household sampling have their own potentials 
for bias. What if no one answers the phone or comes to the door? Should the in-
terviewer skip that household? On the contrary. The interviewer should try 
again (and again), realizing that a household where no one is at home in the 
daytime is quite different from one where someone is nearly always present. 

Selection Bias 

Were the cases and controls drawn from the same population? This question, 
which sounds simple, has profound implications. Selection bias may lead to a 
false association between a disease and some factor because of different proba-
bilities of selecting persons with and without the disease and with and without 
the variable of interest. This problem was first quantified by Berkson (1946) and 
is sometimes called Berksonian bias, or hospital selection bias. 

Response Bias 

When participation in a study is voluntary, response bias (sometimes called 
nonrespondent bias or self-selection bias) is important. Owing to their psy- 
chological makeup, internal motivation, concern for their own health, educa- 
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tional background, and many other reasons, persons who choose voluntarily to 
participate are known to differ from those who decline. Nevertheless, many 
important research studies (e.g., the landmark Framingham Heart Study—the 
Massachusetts study that reported on the dangers to "yo-yo" dieters, who are 
shortening their life expectancy by swinging through cycles of weight loss and 
gain) depend in part on volunteers. A way to control for response bias is to com-
pare characteristics of volunteer subgroups with those of randomly chosen 
subgroups. 

Dropout Bias 

Dropout bias is the mirror image of response bias. In long-term studies, a cer-
tain proportion of participants, for reasons of their own, choose to drop out. 
These persons are likely to differ from those who continue. 

Memory Bias 

There are several well-known aspects of memory bias (also known as subjec-
tive bias). Memory for recent events is much more accurate than for remote 
events. Hence, persons interviewed concerning past illnesses tend to report a 
greater prevalence in the recent past than in the distant past (Stocks, 1944). A 
perhaps more profound form of memory bias is the tendency of persons with a 
disease to overemphasize the importance of events they may consider to be pre-
disposing causes (e.g., breast cancer patients who trace their disease to trau-
matic breast injury). 

Participant Bias 

Participant bias is an interesting form of bias that derives from the participant's 
knowledge of being a member of the experimental or control group and his or 
her perception of the research objectives. For example, a member of a heart dis-
ease intervention study may report and exaggerate minor symptoms actually 
unrelated to the disease under study. 

Lead Time Bias 

Does early detection of chronic disease actually result in improved survival or 
does it merely provide a longer period between first detection and death? This 
fascinating question of lead-time bias is fully considered in Cole and Morrison 
(1980). 

Keys to a Systematic Approach 

Awareness of the potential for bias underlies a critical reading of any research 
report. But bias is not the only issue to keep in mind. A great deal may be 
learned by using a systematic approach toward a critique of any research liter- 



!80 	 Chapter 17 / The Health Survey and the Research Report 

ature. Here are some of the most important questions that should be consid-
ered: 

1. Research objectives. Does the research report clearly state its objectives? Do 
the conclusions address the same objectives? 

2. Study design. What type of study was it? Was sample selection random and 
appropriate to the study design? Were cases and controls comparable and 
drawn from the same reference group? 

3. Data collection. Were criteria for diagnosis precisely defined? Were end 
points (or outcome criteria) clearly stated? Were research instruments 
(whether mechanical or electronic devices, or printed questionnaires) 
standardized? Can the study be independently replicated? 

4. Discussion of results. Are results presented clearly and quantitatively? Do 
tables and figures agree with the text? Are various tables consistent with 
one another? 

5. Data analysis. Does the report address the statistical significance of its re-
sults? If not, are you able to draw a reasonable inference of significance (or 
nonsignificance) from the data as presented? Were the statistical tests ap-
propriate to the data? Does the report discuss alternative explanations for 
what might be spurious statistical significance? 

6. Conclusions. Are the findings justified by the data? Do the findings relate 
appropriately to the research objectives originally set forth? 

Serious users of research literature have found this step-by-step approach ex-
tremely helpful. For a more thorough discussion, see the excellent treatment of 
this topic in Colton (1974). 

Conclusion 

Two fundamental research tools, the health survey and the research report, are 
inseparable parts of the same process: that of aiding scientists, managers, and 
public officials in their decision making. Health surveys need careful planning; 
a systematic stepwise procedure is the best means of avoiding error in their use. 
Research reports are read by nearly everyone in the health sciences. It is impor-
tant to develop a critical eye to distinguish between ordinary reports and those 
of quality. Especially when dealing with human populations, the researcher is 
susceptible to many sources of bias. An understanding of the origins of bias, 
and of the means to avoid bias in whatever form, helps the user assess the qual-
ity of any research report. 
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Vocabulary List 

coding 
consumer 
convenience 

sampling 
dropout bias 
editing 
element 
interviewer bias 
lead-time bias 

mailed questionnaire 
memory bias (subjective 

bias) 
observer bias 
participant bias 
peer review 
person-to-person 

interview 
pretest 

response bias 
(nonrespondent bias; 
self-selection bias) 

sampling bias 
selection bias 

(Berksonian bias) 
systematic sampling 
target population 
telephone interview 

Exercises 

	

17.1 	 Prepare an outline for a health survey on a subject of special interest to you. 

	

17.2 	 Locate a completed health survey. Is it constructed in keeping with the guide- 
lines of this chapter? In what ways is it imperfectly planned? What would you do 
to improve it? 

	

17.3 	 Choose a scientific article that reports on research in your own field. Subject it to 
the evaluation process suggested in this chapter. 

	

17.4 	 Using the survey of Exercise 17.2, the article for Exercise 17.3, or any health sur- 
vey report, discuss how the authors handled potential bias. What steps did they 
take to minimize it? What types of bias may have crept in? How could these have 
been avoided? 

Epilogue 

We hope that the techniques and methods presented in this book will provide 
you with some useful tools that can be used to separate fact from fiction, to de-
termine the significance of experimental results, and ultimately to assist your 
search for truth. The road to truth is seldom an easy one, but a great deal of sat-
isfaction can be attained while traversing it. This is particularly true when one 
is able to establish the significance of a new finding, to learn that a commonly 
accepted approach is not really valid, or to gain the kind of insight that begins 
to shed new light on the process of discovery. The journey may be rough, but it 
is surely worthwhile. Godspeed! 



Appendix A Binomial Probability Table 

n x .01 .05 .10 .15 .20 .25 .30 1/3 .35 .40 .45 .50 

1 0 .9900 .9500 .9000 .8500 .8000 .7500 .7000 .6667 .6500 .6000 .5500 .5000 
1 .0100 .0500 .1000 .1500 .2000 .2500 .3000 .3333 .3500 .4000 .4500 .5000 

0 .9801 .9025 .8100 .7225 .6400 .5625 .4900 .4444 .4225 .3600 .3025 .2500 
2 1 .0198 .0950 .1800 .2550 .3200 .3750 .4200 .4444 .4550 .4800 .4950 .5000 

2 .0001 .0025 .0100 .0225 .0400 .0625 .0900 .1111 .1225 .1600 .2025 .2500 

0 .9703 .8574 .7290 .6141 .5120 .4219 .3430 .2963 .2746 .2160 .1664 .1250 

3 1 .0294 .1354 .2430 .3251 .3840 .4219 .4410 .4444 .4436 .4320 .4084 .3750 
2 .0003 .0071 .0270 .0574 .0960 .1406 .1890 .2222 .2389 .2880 .3341 .3750 
3 .0000 .0001 .0010 .0034 .0080 .0156 .0270 .0370 .0429 .0640 .0911 .1250 

0 .9606 .8145 .6561 .5220 .4096 .3164 .2401 .1975 .1785 .1296 .0915 .0625 
1 .0388 .1715 .2916 .3685 .4096 .4219 .4116 .3951 .3845 .3456 .2995 .2500 

4 2 .0006 .0135 .0486 .0975 .1536 .2109 .2646 .2963 .3105 .3456 .3675 .3750 
3 .0000 .0005 .0036 .0115 .0256 .0469 .0756 .0988 .1115 .1536 .2005 .2500 
4 .0000 .0000 .0001 .0005 .0016 .0039 .0081 .0123 .0150 .0256 .0410 .0625 

0 .9510 .7738 .5905 .4437 .3277 .2373 .1681 .1317 .1160 .0778 .0503 .0312 
1 .0480 .2036 .3280 .3915 .4096 .3955 .3601 .3292 .3124 .2592 .2059 .1563 
2 .0010 .0214 .0729 .1382 .2048 .2637 .3087 .3292 .3364 .3456 .3369 .3125 
3 .0000 .0012 .0081 .0244 .0512 .0879 .1323 .1646 .1812 .2304 .2757 .3125 
4 .0000 .0000 .0005 .0021 .0064 .0146 .0284 .0412 .0487 .0768 .1127 .1563 
5 .0000 .0000 .0000 .0001 .0003 .0010 .0024 .0041 .0053 .0102 .0185 .0312 

0 .9415 .7351 .5314 .3771 .2621 .1780 .1176 .0878 .0754 .0467 .0277 .0156 
1 .0570 .2321 .3543 .3994 .3932 .3559 .3026 .2634 .2437 .1866 .1359 .0938 
2 .0015 .0306 .0984 .1762 .2458 .2967 .3241 .3292 .3280 .3110 .2779 .2344 

6 3 .0000 .0021 .0146 .0414 .0819 .1318 .1852 .2195 .2355 .2765 .3032 .3125 
4 .0000 .0001 .0012 .0055 .0154 .0330 .0596 .0823 .0951 .1382 .1861 .2344 
5 .0000 .0000 .0001 .0004 .0015 .0044 .0102 .0165 .0205 .0369 .0609 .0938 
6 .0000 .0000 .0000 .0000 .0001 .0002 .0007 .0014 .0018 .0041 .0083 .0156 

continued 

SOURCE: Reprinted with permission from Handbook of Tables for Probability and Statistics, ed. William 
H. Beyer (Boca Raton, Fl.: CRC Press, 1966). Copyright CRC Press, Inc., Boca Raton, Fl. 
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)1 	 x 	 .01 	 .05 	 .10 	 .15 	 .20 	 .25 	 .30 	 1/3 	 .35 	 .40 	 .45 	 .50 

7 

0 
1 
2 
3 
4 
5 
6 
7 

.9321 

.0659 

.0020 

.0000 

.0000 

.0000 

.0000 

.0000 

.6983 

.2573 

.0406 

.0036 

.0002 

.0000 

.0000 

.0000 

.4783 

.3720 

.1240 

.0230 

.0025 

.0002 

.0000 

.0000 

.3206 

.3960 

.2096 

.0617 

.0109 

.0011 

.0001 

.0000 

.2097 

.3670 

.2753 

.1147 

.0286 

.0043 

.0004 

.0000 

.1335 

.3114 

.3115 

.1730 

.0577 

.0116 

.0012 

.0001 

.0824 

.2470 

.3177 

.2269 

.0972 

.0250 

.0036 

.0002 

.0585 

.2048 

.3073 

.2561 

.1280 

.0384 

.0064 

.0005 

.0490 

.1848 

.2985 

.2679 

.1442 

.0466 

.0084 

.0006 

.0280 

.1306 

.2613 

.2903 

.1935 

.0775 

.0172 

.0016 

.0152 

.0872 

.2140 

.2919 

.2388 

.1172 

.0320 

.0037 

.0078 

.0547 

.1641 

.2734 

.2734 

.1641 

.0547 

.0078 

8 

0 
1 
2 
3 
4 
5 
6 
7 
8 

.9227 

.0746 

.0026 

.0001 

.0000 

.0000 

.0000 

.0000 

.0000 

.6634 

.2794 

.0514 

.0054 

.0004 

.0000 

.0000 

.0000 

.0000 

.4305 

.3826 

.1488 

.0331 

.0046 

.0004 

.0000 

.0000 

.0000 

.2725 

.3847 

.2376 

.0838 

.0185 

.0027 

.0002 

.0000 

.0000 

.1678 

.3355 

.2936 

.1468 

.0459 

.0092 

.0011 

.0001 

.0000 

.1001 

.2670 

.3114 

.2077 

.0865 

.0231 

.0038 

.0004 

.0000 

.0576 

.1977 

.2965 

.2541 

.1361 

.0467 

.0100 

.0012 

.0001 

.0390 

.1561 

.2731 

.2731 

.1707 

.0683 

.0171 

.0024 

.0002 

.0319 

.1372 

.2587 

.2786 

.1875 

.0808 

.0217 

.0034 

.0002 

.0168 

.0896 

.2090 

.2787 

.2322 

.1239 

.0413 

.0078 

.0007 

.0084 

.0548 

.1570 

.2569 

.2626 

.1718 

.0704 

.0164 

.0017 

.0039 

.0313 

.1093 

.2188 

.2734 

.2188 

.1093 

.0313 

.0039 

9 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

.9135 

.0831 

.0033 

.0001 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

.6302 

.2986 

.0628 

.0078 

.0006 

.0000 

.0000 

.0000 

.0000 

.0000 

.3874 

.3874 

.1722 

.0447 

.0074 

.0008 

.0001 

.0000 

.0000 

.0000 

.2316 

.3678 

.2597 

.1070 

.0283 

.0050 

.0006 

.0000 

.0000 

.0000 

.1342 

.3020 

.3020 

.1762 

.0660 

.0165 

.0028 

.0003 

.0000 

.0000 

.0751 

.2252 

.3004 

.2336 

.1168 

.0389 

.0087 

.0012 

.0001 

.0000 

.0404 

.1556 

.2668 

.2669 

.1715 

.0735 

.0210 

.0039 

.0004 

.0000 

.0260 

.1171 

.2341 

.2731 

.2048 

.1024 

.0341 

.0073 

.0009 

.0001 

.0207 

.1004 

.2162 

.2716 

.2194 

.1181 

.0424 

.0098 

.0013 

.0001 

.0101 

.0604 

.1613 

.2508 

.2508 

.1672 

.0744 

.0212 

.0035 

.0003 

.0046 

.0339 

.1110 

.2119 

.2600 

.2128 

.1160 

.0407 

.0083 

.0008 

.0020 

.0175 

.0703 

.1641 

.2461 

.2461 

.1641 

.0703 

.0175 

.0020 

10 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

.9044 

.0913 

.0042 

.0001 

.0000 

.0000 

.0000 

.0000 

.5987 

.3152 

.0746 

.0105 

.0009 

.0001 

.0000 

.0000 

.3487 

.3874 

.1937 

.0574 

.0112 

.0015 

.0001 

.0000 

.0000 

.1969 

.3474 

.2759 

.1298 

.0401 

.0085 

.0013 

.0001 

.0000 

.0000 

.0000 

.1074 

.2684 

.3020 

.2013 

.0881 

.0264 

.0055 

.0008 

.0001 

.0000 

.0000 

.0563 

.1877 

.2816 

.2503 

.1460 

.0584 

.0162 

.0031 

.0004 

.0000 

.0000 

.0282 

.1211 

.2335 

.2668 

.2001 

.1030 

.0367 

.0090 

.0015 

.0001 

.0000 

.0173 

.0867 

.1951 

.2601 

.2276 

.1366 

.0569 

.0163 

.0030 

.0003 

.0000 

.0135 

.0725 

.1756 

.2522 

.2377 

.1536 

.0689 

.0212 

.0043 

.0005 

.0000 

.0060 

.0404 

.1209 

.2150 

.2508 

.2007 

.1114 

.0425 

.0106 

.0016 

.0001 

.0025 

.0208 

.0763 

.1664 

.2384 

.2340 

.1596 

.0746 

.0229 

.0042 

.0003 

.0010 

.0097 

.0440 

.1172 

.2051 

.2460 

.2051 

.1172 

.0440 

.0097 

.0010 

11 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

.8953 

.0995 

.0050 

.0002 

.0000 

.0000 

.5688 

.3293 

.0867 

.0136 

.0015 

.0001 

.0000 

.0000 

.3138 

.3836 

.2130 

.0711 

.0157 

.0025 

.0003 

.0000 

.0000 

.1673 

.3249 

.2866 

.1518 

.0535 

.0132 

.0024 

.0003 

.0000 

.0000 

.0859 

.2362 

.2953 

.2215 

.1107 

.0387 

.0097 

.0018 

.0002 

.0000 

.0000 

.0422 

.1549 

.2581 

.2581 

.1721 

.0803 

.0267 

.0064 

.0011 

.0001 

.0000 

.0000 

.0198 

.0932 

.1998 

.2568 

.2201 

.1321 

.0566 

.0173 

.0037 

.0006 

.0000 

.0000 

.0116 

.0636 

.1590 

.2384 

.2384 

.1669 

.0835 

.0298 

.0075 

.0012 

.0001 

.0000 

.0088 

.0518 

.1395 

.2255 

.2427 

.1830 

.0986 

.0379 

.0102 

.0018 

.0002 

.0000 

.0036 

.0266 

.0887 

.1774 

.2365 

.2207 

.1471 

.0701 

.0234 

.0052 

.0007 

.0000 

.0014 

.0125 

.0513 

.1259 

.2060 

.2360 

.1931 

.1128 

.0462 

.0126 

.0020 

.0002 

.0005 

.0054 

.0268 

.0806 

.1611 

.2256 

.2256 

.1611 

.0806 

.0268 

.0054 

.0005 

continued 



284 	 Appendix A/ Binomial Probability Table 

n .01 .05 .10 .15 .20 .25 .30 1/3 .35 .40 .45 .50 

0 .8864 .5404 .2824 .1422 .0687 .031 7 .0138 .0077 .0057 .0022 .0008 .0002 
1 .1074 .3412 .3766 .3013 .2062 .1267 .0712 .0462 .0367 .0174 .0075 .0030 
2 .0060 .0988 .2301 .2923 .2834 .2323 .1678 .1272 .1089 .0638 .0338 .0161 
3 .0002 .0174 .0853 .1720 .2363 .2581 .2397 .2120 .1954 .1419 .0924 .0537 
4 .0000 .0020 .0213 .0683 .1328 .1936 .2312 .2384 .2366 .2129 .1700 .1208 
5 .0002 .0038 .0193 .0532 .1032 .1585 .1908 .2040 .2270 .2225 .1934 

12 6 .0000 .0004 .0039 .0155 .0401 .0792 .1113 .1281 .1766 .2124 .2256 
7 .0001 .0006 .0033 .0115 .0291 .0477 .0591 .1009 .1489 .1934 
8 .0000 .0001 .0005 .0024 .0078 .0149 .0199 .0420 .0761 .1208 
9 .0000 .0001 .0004 .0015 .0033 .0048 .0125 .0277 .0537 

10 .0000 .0000 .0002 .0005 .0007 .0025 .0068 .0161 
11 .0000 .0000 .0000 .0001 .0003 .0010 .0030 
12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 

0 .8601 .4633 .2059 .0874 .0352 .0134 .0047 .0023 .0016 .0005 .0001 .0000 
1 .1301 .3667 .3431 .2312 .1319 .0668 .0306 .0171 .0126 .0047 .0016 .0005 
2 .0092 .1348 .2669 .2856 .2309 .1559 .0915 .0599 .0475 .0219 .0090 .0032 
3 .0004 .0307 .1285 .2185 .2502 .2252 .1701 .1299 .1110 .0634 .0317 .0139 
4 .0000 .0049 .0429 .1156 .1876 .2252 .2186 .1948 .1792 .1268 .0780 .0416 
5 .0005 .0105 .0449 .1031 .1651 .2061 .2143 .2124 .1859 .1404 .0917 
6 .0001 .0019 .0132 .0430 .0918 .1473 .1786 .1905 .2066 .1914 .1527 
7 .0000 .0003 .0030 .0139 .0393 .0811 .1148 .1320 .1771 .2013 .1964 

15 
8 .0000 .0005 .0034 .0131 .0348 .0574 .0710 .1181 .1657 .1964 
9 .0001 .0007 .0034 .0115 .0223 .0298 .0612 .1049 .1527 

10 .0000 .0001 .0007 .0030 .0067 .0096 .0245 .0514 .0917 
11 .0000 .0001 .0006 .0015 .0023 .0074 .0192 .0416 
12 .0000 .0001 .0003 .0004 .0016 .0052 .0139 
13 .0000 .0000 .0001 .0003 .0010 .0032 
14 .0000 .0000 .0000 .0000 .0001 .0005 
15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 

0 .8179 .3583 .1216 .0388 .0115 .0032 .0008 .0003 .0002 .0000 .0000 .0000 
1 .1652 .3773 .2701 .1368 .0577 .0211 .0068 .0030 .0019 .0005 .0001 .0000 
2 .0159 .1887 .2852 .2293 .1369 .0670 .0279 .0143 .0100 .0031 .0008 .0002 
3 .0010 .0596 .1901 .2428 .2053 .1339 .0716 .0429 .0323 .0124 .0040 .0011 
4 .0000 .0133 .0898 .1821 .2182 .1896 .1304 .0911 .0738 .0350 .0140 .0046 
5 .0023 .0319 .1029 .1746 .2024 .1789 .1457 .1272 .0746 .0364 .0148 
6 .0003 .0089 .0454 .1091 .1686 .1916 .1821 .1714 .1244 .0746 .0370 
7 .0000 .0020 .0160 .0546 .1124 .1643 .1821 .1844 .1659 .1221 .0739 
8 .0003 .0046 .0221 .0609 .1144 .1480 .1614 .1797 .1623 .1201 
9 .0001 .0011 .0074 .0270 .0653 .0987 .1158 .1597 .1771 .1602 

20 10 .0000 .0002 .0020 .0100 .0309 .0543 .0686 .1172 .1593 .1762 
11 .0000 .0005 .0030 .0120 .0247 .0336 .0710 .1185 .1602 
12 .0001 .0007 .0038 .0092 .0136 .0355 .0728 .1201 
13 .0000 .0002 .0010 .0028 .0045 .0145 .0366 .0739 
14 .0000 .0003 .0007 .0012 .0049  .0150 .0370 
15 .0000 .0001 .0003 .0013 .0049 .0148 
16 .0000 .0000 .0003 .0012 .0046 
17 .0000 .0003 .0011 
18 .0000 .0002 
19 .0000 .0000 
20 .0000 .0000 .0000 .0000 .0000 .0000 0000 .0000 .0000 .0000 .0000 .0000 

1 



)pendix B Percentiles of the F Distribution 

F„);  (use with a = .05) 

dfb  
dfw  1 2 3 4 5 6 7 8 9 

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 
a: 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 

'continued 

SOURCE: Reprinted with permission from Handbook of Tables for Probability and Statistics, ed. William 
H. Beyer (Boca Raton, Fl.: CRC Press, 1966). Copyright CRC Press, Inc., Boca Raton, Fl. 
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F yn  (use with a = .05) 

dfh  
df„, 10 12 15 20 24 30 40 60 120 

1 241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 255.3 254.30 

2 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50 

3 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53 

4 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63 

5 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36 

6 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67 

7 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23 

8 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93 

9 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71 

10 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54 

11 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40 

12 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30 

13 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21 

14 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.19 2.13 

15 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07 

16 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01 

17 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96 

18 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92 

19 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88 

20 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84 

21 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81 

22 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78 

23 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76 

24 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73 

25 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71 

26 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69 

27 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67 

28 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65 

29 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64 

30 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62 

40 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51 

60 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39 

120 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25 

1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00 

continued 
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F 99  (use with a = .01) 

df, 

dfw  1 2 3 4 5 6 7 8 9 

1 4052.00 4999.50 5403.00 5625.00 5764.00 5859.00 5928.00 5981.00 6022.00 

2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 

3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 

4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.55 

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 

7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 

8 11.26 8.65 7.59 7.01 .  6.63 6.37 6.18 6.03 5.91 

9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 

13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 

14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 

17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 

18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 

19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 

23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 

24 7.82 5.61 4.79 4.22 3.90 3.67 3.50 3.36 3.26 

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 

27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 

28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 

29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 

Do 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 

continued 
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F,„ (use with a 	 .01) 

df, 10 12 15 20 
dft, 

24 30 40 60 120 x 

1 6056.00 6106.00 6157.00 6209.00 6235.00 6261.00 6287.00 6313.00 6339.00 6366.00 2 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50 3 27.23 27.05 26.87 26.69 26.60 26.50 26.41 26.32 26.22 26.13 4 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46 5 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02 
6 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88 7 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65 8 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 9 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31 10 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91 

11 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60 12 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36 13 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17 14 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00 15 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87 
16 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75 17 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65 18 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57 19 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 20 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42 
21 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36 22 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31 23 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26 24 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21 25 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17 
26 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13 27 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10 28 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06 29 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03 30 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01 
40 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80 60 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60 120 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00 

I 

I 



)pendix C Percentage Points of the 
Studentized Range for 2 
Through 20 Treatments 

Upper 5% Points 

k 
df, 2 3 4 5 6 7 8 9 10 

1 17.97 26.98 32.82 37.08 40.41 43.12 45.40 47.36 49.07 
2 6.08 8.33 9.80 10.88 11.74 12.44 13.03 13.54 13.99 
3 4.50 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46 
4 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 
5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 

6 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 
7 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 
8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 
9 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 

10 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 

11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 
12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 
13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 
14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 
15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 

16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 
17 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 

18 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 
19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 
20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 

24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 
30 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 
40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 
60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 

120 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 
x 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 

continued 

SOURCE: From Table 29 of Pearson, E. S., and Hartley, H. 0. (1966) Biometrika: Tables for Statisticians, 
Volume I, Third Edition, published by Cambridge University Press. 
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Upper 5% Points 

df, 11 12 13 14 
k 

15 16 17 18 19 20 

1 50.59 51.96 53.20 54.33 55.36 56.32 57.22 58.04 58.83 59.56 
2 14.39 14.75 15.08 15.38 15.65 15.91 16.14 16.37 16.57 16.77 
3 9.72 9.95 10.15 10.35 10.52 10.69 10.84 10.98 11.11 11.24 
4 8.03 8.21 8.37 8.52 8.66 8.79 8.91 9.03 9.13 9.23 
5 7.17 7.32 7.47 7.60 7.72 7.83 7.93 8.03 8.12 8.21 
6 6.65 6.79 6.92 7.03 7.14 7.24 7.34 7.43 7.51 7.59 
7 6.30 6.43 6.55 6.66 6.76 6.85 6.94 7.02 7.10 7.17 
8 6.05 6.18 6.29 6.39 6.48 6.57 6.65 6.73 6.80 6.87 
9 5.87 5.98 6.09 6.19 6.28 6.36 6.44 6.51 6.58 6.64 

10 5.72 5.83 5.93 6.03 6.11 6.19 6.27 6.34 6.40 6.47 
11 5.61 5.71 5.81 5.90 5.98 6.06 6.13 6.20 6.27 6.33 
12 5.51 5.61 5.71 5.80 5.88 5.95 6.02 6.09 6.15 6.21 
13 5.43 5.53 5.63 5.71 5.79 5.86 5.93 5.99 6.05 6.11 
14 5.36 5.46 5.55 5.64 5.71 5.79 5.85 5.91 5.97 6.03 
15 5.31 5.40 5.49 5.57 5.65 5.72 5.78 5.85 5.90 5.96 
16 5.26 5.35 5.44 5.52 5.59 5.66 5.73 5.79 5.84 5.90 
17 5.21 5.31 5.39 5.47 5.54 5.61 5.67 5.73 5.79 5.84 
18 5.17 5.27 5.35 5.43 5.50 5.57 5.63 5.69 5.74 5.79 
19 5.14 5.23 5.31 5.39 5.46 5.53 5.59 5.65 5.70 5.75 
20 5.11 5.20 5.28 5.36 5.43 5.49 5.55 5.61 5.66 5.71 
24 5.01 5.10 5.18 5.25 5.32 5.38 5.44 5.49 5.55 5.59 
30 4.92 5.00 5.08 5.15 5.21 5.27 5.33 5.38 5.43 5.47 
40 4.82 4.90 4.98 5.04 5.11 5.16 5.22 5.27 5.31 5.36 
60 4.73 4.81 4.88 4.94 5.00 5.06 5.11 5.15 5.20 5.24 

120 4.64 4.71 4.78 4.84 4.90 4.95 5.00 5.04 5.09 5.13 
4.55 4.62 4.68 4.74 4.80 4.85 4.89 4.93 4.97 5.01 

continued 



Appendix C / Percentage Points of the Studentized Range 	 291 

Upper 1% Points 

k 
df,„, 2 3 4 5 6 7 8 9 10 

1 90.03 135.00 164.30 185.60 202.20 215.80 227.20 237.00 245.60 
2 14.04 19.02 22.29 24.72 26.63 28.20 29.53 30.68 31.69 
3 8.26 10.62 12.17 13.33 14.24 15.00 15.64 16.20 16.69 
4 6.51 8.12 9.17 9.96 1058 11.10 11.55 11.93 12.27 

5 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24 

6 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 
7 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 
8 4.75 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86 
9 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49 

10 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 

11 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 
12 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 
13 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 
14 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 
15 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 

16 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 
17 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 
18 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 
19 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 
20 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 

24 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 
30 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 
40 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 
60 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 

120 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 
cc 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 

continued 
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Upper 1% Points. 

k 
11 	 12 	 13 	 14 	 15 	 16 	 17 	 18 	 19 	 2() 

	

253.2 	 260.0 	 266.2 	 271.8 	 277.0 	 281.8 	 286.3 	 290.4 	 294.3 	 298.0 

	

32.59 	 33.40 	 34.13 	 34.81 	 35.43 	 36.00 	 36.53 	 37.03 	 37.50 	 37.95 

	

17.13 	 17.53 	 17.89 	 18.22 	 18.52 	 18.81 	 19.07 	 19.32 	 19.55 	 19.77 

	

12.57 	 12.84 	 13.09 	 13.32 	 13.53 	 13.73 	 13.91 	 14.08 	 14.24 	 14.40 

	

10.48 	 10.70 	 10.89 	 11.08 	 11.24 	 11.40 	 11.55 	 11.68 	 11.81 	 11.93 

	

9.30 	 9.48 	 9.65 	 9.81 	 9.95 	 10.08 	 10.21 	 10.32 	 10.43 	 10.54 

	

8.55 	 8.71 	 8.86 	 9.00 	 9.12 	 9.24 	 9.35 	 9.46 	 9.55 	 9.65 

	

8.03 	 8.18 	 8.31 	 8.44 	 8.55 	 8.66 	 8.76 	 8.85 	 8.94 	 9.03 

	

7.65 	 7.78 	 7.91 	 8.03 	 8.13 	 8.23 	 8.33 	 8.41 	 8.49 	 8.57 

	

7.36 	 7.49 	 7.60 	 7.71 	 7.81 	 7.91 	 7.99 	 8.08 	 8.15 	 8.23 

	

7.13 	 7.25 	 7.36 	 7.46 	 7.56 	 7.65 	 7.73 	 7.81 	 7.88 	 7.95 

	

6.94 	 7.06 	 7.17 	 7.26 	 7.36 	 7.44 	 7.52 	 7.59 	 7.66 	 7.73 

	

6.79 	 6.90 	 7.01 	 7.10 	 7.19 	 7.27 	 7.35 	 7.42 	 7.48 	 7.55 

	

6.66 	 6.77 	 6.87 	 6.96 	 7.05 	 7.13 	 7.20 	 7.27 	 7.33 	 7.39 

	

6.55 	 6.66 	 6.76 	 6.84 	 6.93 	 7.00 	 7.07 	 7.14 	 7.20 	 7.26 

	

6.46 	 6.56 	 6.66 	 6.74 	 6.82 	 6.90 	 6.97 	 7.03 	 7.09 	 7.15 

	

6.38 	 6.48 	 6.57 	 6.66 	 6.73 	 6.81 	 6.87 	 6.94 	 7.00 	 7.05 

	

6.31 	 6.41 	 6.50 	 6.58 	 6.65 	 6.73 	 6.79 	 6.85 	 6.91 	 6.97 

	

6.25 	 6.34 	 6.43 	 6.51 	 6.58 	 6.65 	 6.72 	 6.78 	 6.84 	 6.89 

	

6.19 	 6.28 	 6.37 	 6.45 	 6.52 	 6.59 	 6.65 	 6.71 	 6.77 	 6.82 

	

6.02 	 6.11 	 6.19 	 6.26 	 6.33 	 6.39 	 6.45 	 6.51 	 6.56 	 6.61 

	

5.85 	 5.93 	 6.01 	 6.08 	 6.14 	 6.20 	 6.26 	 6.31 	 6.36 	 6.41 

	

5.69 	 5.76 	 5.83 	 5.90 	 5.96 	 6.02 	 6.07 	 6.12 	 6.16 	 6.21 

	

5.53 	 5.60 	 5.67 	 5.73 	 5.78 	 5.84 	 5.89 	 5.93 	 5.97 	 6.01 

	

5.37 	 5.44 	 5.50 	 5.56 	 5.61 	 5.66 	 5.71 	 5.75 	 5.79 	 5.83 

	

5.23 	 5.29 	 5.35 	 5.40 	 5.45 	 5.49 	 5.54 	 5.57 	 5.61 	 5.65 

df„ 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

24 
30 
40 
60 

120 



Ipendix D Critical Values of n 
for the Sign Test 

In the body of the table, the first number of the pair usually refers to the positive 
values, and the second number to the negative values. 

a(two-sided) 0.10 
a(one-sided) 0.05 

0.05 
0.025 

0.02 
0.01 

0.01 
0.005 

1 
2 
3 
4 
5 0, 5 

6 0,6 0,6 
7 0, 7 0, 7 0, 7 
8 1,7 0,8 0,8 0,8 
9 1,8 1,8 0,9 0,9 

10 1, 9 1, 9 0, 10 0, 10 

11 2,9 1,10 1,10 0,11 
12 2, 10 2, 10 1, 11 1, 11 
13 3, 10 2, 11 1, 12 1, 12 
14 3, 11 2, 12 2, 12 1, 13 
15 3, 12 3, 12 2, 13 2, 13 

16 4, 12 3, 13 2, 14 2, 14 
17 4,13 4,13 3,14 2,15 
18 5,13 4, 14 3,15 3, 15 
19 5, 14 4, 15 4, 15 3, 16 
20 5, 15 5, 15 4, 16 3, 17 

21 6,15 5, 16 4, 17 4, 17 
22 6, 16 5, 17 5, 17 4, 18 
23 7, 16 6, 17 5, 18 4, 19 
24 7,17 6, 18 5, 19 5, 19 
25 7, 18 7, 18 6, 19 5, 20 

26 8, 18 7, 19 6, 20 6, 20 
27 8, 19 7, 20 7, 20 6, 21 
28 9, 19 8, 20 7, 21 6, 22 
29 9, 20 8, 21 7, 22 7, 22 
30 10, 20 9, 21 8, 22 7, 23 

31 10, 21 9, 22 8, 23 7, 24 
32 10, 22 9, 23 8, 24 8, 24 
33 11, 22 10, 23 9, 24 8, 25 
34 11, 23 10, 24 9, 25 9, 25 
35 12, 23 11, 24 10, 25 9, 26 

continued 
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a(two-sided) 0.10 
a(one-sided) 0.05 

0.05 
0.025 

0.02 
0.01 

0.01 
0.005 

36 12,24 11,25 10,26 9,27 

37 13,24 12,25 10, 27 10, 27 

38 13,25 12,26 11,27 10,28 

39 13,26 12,27 11,28 11,28 

40 14,26 13, 27 12,28 11,29 

41 14,27 13,28 12,29 11,30 

42 15,27 14,28 13,29 12,30 

43 15,28 14,29 13,30 12,31 

44 16,28 15,29 13,31 13,31 

45 16,29 15,30 14,31 13,32 

46 16,30 15,31 14,32 13,33 

47 17,30 16,31 15,32 14,33 

48 17,31 16,32 15,33 14,34 

49 18,31 17,32 15,34 15,34 

50 18,32 17,33 16,34 15,35 

51 19,32 18,33 16,35 15,36 

52 19,33 18,34 17,35 16,36 

53 20, 33 18,35 17,36 16,37 

54 20, 34 19,35 18,36 17,37 

55 20, 35 19,36 18,37 17,38 

56 21,35 20,36 18,38 17,39 

57 21, 36 20, 37 19,38 18,39 

58 22,36 21,37 19,39 18,40 

59 22,37 21,38 20,39 19,40 

60 23,37 21,39 20, 40 19, 41 



Jpendix E Random Number Tables 

Row 
number 

00000 10097 32533 76520 13586 34673 54876 80959 09177 39292 74945 
00001 37542 04805 64894 74296 24805 24037 20636 10402 00822 91665 
00002 08422 68953 19645 09303 23209 02560 15953 34764 35080 33606 
00003 99019 02529 09376 70715 38311 31165 88676 74397 04436 27659 
00004 12807 99970 80157 36147 64032 36653 98951 16877 12171 76833 

00005 66065 74717 34072 76850 36697 36170 65813 39885 11199 29170 
00006 31060 10805 45571 82406 35303 42614 86799 07439 23403 09732 
00007 85269 77602 02051 65692 68665 74818 73053 85247 18623 88579 
00008 63573 32135 05325 47048 90553 57548 28468 28709 83491 25624 
00009 73796 45753 03529 64778 35808 34282 60935 20344 35273 88435 

00010 98520 17767 14905 68607 22109 40558 60970 93433 50500 73998 
00011 11805 05431 39808 27732 50725 68248 29405 24201 52775 67851 
00012 83452 99634 06288 98033 13746 70078 18475 40610 68711 77817 
00013 88685 40200 86507 58401 36766 67951 90364 76493 29609 11062 
00014 99594 67348 87517 64969 91826 08928 93785 61368 23478 34113 

00015 65481 17674 17468 50950 58047 76974 73039 57186 40218 16544 
00016 80124 35635 17727 08015 45318 22374 21115 78253 14385 53763 
00017 74350 99817 77402 77214 43236 00210 45521 64237 96286 02655 
00018 69916 26803 66252 29148 36936 87203 76621 13990 94400 56418 
00019 09893 20505 14225 68514 46427 56788 96297 78822 54382 14598 

00020 91499 14523 68479 27686 46162 83554 94750 89923 37089 20048 
00021 80336 94598 26940 36858 70297 34135 53140 33340 42050 82341 
00022 44104 81949 85157 47954 32979 26575 57600 40881 22222 06413 
00023 12550 73742 11100 02040 12860 74697 96644 89439 28707 25815 
00024 63606 49329 16505 34484 40219 52563 43651 77082 07207 31790 

00025 61196 90446 26457 47774 51924 33729 65394 59593 42582 60527 
00026 15474 45266 95270 79953 59367 83848 82396 10118 33211 59466 
00027 94557 28573 67897 54387 54622 44431 91190 42592 92927 45973 
00028 42481 16213 97344 08721 16868 48767 03071 12059 25701 46670 
00029 23523 78317 73208 89837 68935 91416 26252 29663 05522 82562 

00030 04493 52494 75246 33824 45862 51025 61962 79335 65337 12472 
00031 00549 97654 64051 88159 96119 63896 54692 82391 23287 29529 
00032 35963 15307 26898 09354 33351 35462 77974 50024 90103 39333 
00033 59808 08391 45427 26842 83609 49700 13021 24892 78565 20106 
00034 46058 85236 01390 92286 77281 44077 93910 83647 70617 42941 

00035 32179 00597 87379 25241 05567 07007 86743 17157 85394 11838 
00036 69234 61406 20117 45204 15956 60000 18743 92423 97118 96338 
00037 19565 41430 01758 75379 40419 21585 66674 36806 84962 85207 
00038 45155 14938 19476 07246 43667 94543 59047 90033 20826 69541 
00039 94864 31994 36168 10851 34888 81553 01540 35456 05014 51176 

continued 
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Row 
number 

00040 98086 24826 45240 28404 44999 08896 39094 73407 35441 31880 
00041 33185 16232 41941 50949 89435 48581 88695 41994 37548 73043 
00042 80951 00406 96382 70774 20151 23387 25016 25298 94624 61171 
00043 79752 49140 71961 28296 69861 02591 74852 20539 00387 59579 
00044 18633 32537 98145 06571 31010 24674 05455 61427 77938 91936 

00045 74029 43902 77557 32270 97790 17119 52527 58021 80814 51748 
00046 54178 45611 80993 37143 05335 12969 56127 19255 36040 90324 
00047 11664 49883 52079 84827 59381 71539 09973 33440 88461 23356 
00048 48324 77928 31249 64710 02295 36870 32307 57546 15020 09994 
00049 69074 94138 87637 91976 35584 04401 10518 21615 01848 76938 

00050 09188 20097 32825 39527 04220 86304 83389 87374 64278 58044 
00051 90045 85497 51981 50654 94938 81997 91870 76150 68476 64659 
00052 73189 50207 47677 26269 62290 64464 27124 67018 41361 82760 
00053 75768 76490 20971 87749 90429 12272 95375 05871 93823 43178 
00054 54016 44056 66281 31003 00682 27398 20714 53295 07706 17813 

00055 08358 69910 78542 42785 13661 58873 04618 97553 31223 08420 
00056 28306 03264 81333 10591 40510 07893 32604 60475 94119 01840 
00057 53840 86233 81594 13628 51215 90290 28466 68795 77762 20791 
00058 91757 53741 61613 62669 50263 90212 55781 76514 83483 47055 
00059 89415 92694 00397 58391 12607 17646 48949 72306 94541 37408 

00060 77513 03820 86864 29901 68414 82774 51908 13980 72893 55507 
00061 19502 37174 69979 20288 55210 29773 74287 75251 65344 67415 
00062 21818 59313 93278 81757 05686 73156 07082 85046 31853 38452 
00063 51474 66499 68107 23621 94049 91345 42836 09191 08007 45449 
00064 99559 68331 62535 24170 69777 12830 74819 78142 43860 72834 

00065 33713 48007 93584 72869 51926 64721 58303 29822 93174 93972 
00066 85274 86893 11303 22970 28834 34137 73515 90400 71148 43643 
00067 84133 89640 44035 52166 73852 70091 61222 60561 62327 18423 
00068 56732 16234 17395 96131 10123 91622 85496 57560 81604 18880 
00069 65138 56806 87648 85261 34313 65861 45875 21069 85644 47277 

00070 38001 02176 81719 11711 71602 92937 74219 64049 65584 49698 
00071 37402 96397 01304 77586 56271 10086 47324 62605 40030 37438 
00072 97125 40348 87083 31417 21815 39250 75237 62047 15501 29578 
00073 21826 41134 47143 34072 64638 85902 49139 06441 03856 54552 
00074 73135 42742 95719 09035 85794 74296 08789 88156 64691 19202 

00075 07638 77929 03061 18072 96207 44156 23821 99538 04713 66994 
00076 60528 83441 07954 19814 59175 20695 05533 52139 61212 06455 
00077 83596 35655 06958 92983 05128 09719 77433 53783 92301 50498 
00078 10850 62746 99599 10507 13499 06319 53075 71839 06410 19362 
00079 39820 98952 43622 63147 64421 80814 43800 09351 31024 73167 

00080 59580 06478 75569 78800 88835 54486 23768 06156 04111 08408 
00081 38508 07341 23793 48763 90822 97022 17719 04207 95954 49953 
00082 30692 70668 94688 16127 56196 80091 82067 63400 05462 69200 
00083 65443 95659 18238 27437 49632 24041 08337 65676 96299 90836 
00084 27267 50264 13192 72294 07477 44606 17985 48911 97341 30358 

00085 91307 06991 19072 24210 36699 53728 28825 35793 28976 66252 
00086 68434 94688 84473 13622 62126 98408 12843 82590 09815 93146 
00087 48908 15877 54745 24591 35700 04754 83824 52692 54130 55160 
00088 06913 45197 42672 78601 11883 09528 63011 98901 14974 40344 
00089 10455 16019 14210 33712 91342 37821 88325 80851 43667 70883 

continued' 
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Row 
number 

00090 12883 97343 65027 61184 04285 01392 17974 15077 90712 26769 
00091 21778 30976 38807 36961 31649 42096 63281 02023 08816 47449 
00092 19523 59515 65122 59659 86283 68258 69572 13798 16435 91529 
00093 67245 52670 35583 16563 79246 86686 76463 34222 26655 90802 
00094 60584 47377 07500 37992 45134 26529 26760 83637 41326 44344 

00095 53853 41377 36066 94850 58838 73859 49364 73331 96240 43642 
00096 24637 38736 74384 89342 52623 07992 12369 18601 03742 83873 
00097 83080 12451 38992 22815 07759 51777 97377 27585 51972 37867 
00098 16444 24334 36151 99073 27493 70939 85130 32552 54846 54759 
00099 60790 18157 57178 65762 11161 78576 45819 52979 65130 04860 

00100 03991 10461 93716 16894 66083 24653 84609 58232 88618 19161 
00101 38555 95554 32886 59780 08355 60860 29735 47762 71299 23853 
00102 17546 73704 92052 46215 55121 29281 59076 07936 27954 58909 
00103 32643 52861 95819 06831 00911 98936 76355 93779 80863 00514 
00104 69572 68777 39510 35905 14060 40619 29549 69616 33564 60780 

00105 24122 66591 27699 06494 14845 46672 61958 77100 90899 75754 
00106 61196 30231 92962 61773 41839 55382 17267 70943 78038 70267 
00107 30532 21704 10274 12202 39685 23309 10061 68829 55986 66485 
00108 03788 97599 75867 20717 74416 53166 35208 33374 87539 08823 
00109 48228 63379 85783 47619 53152 67433 35663 52972 16818 60311 

00110 60365 94653 35075 33949 42614 29297 01918 28316 98953 73231 
00111 83799 42402 56623 34442 34994 41374 70071 14736 09958 18065 
00112 32960 07405 36409 83232 99385 41600 11133 07586 15917 06253 
00113 19322 53845 57620 52606 66497 68646 78138 66559 19640 99413 
00114 11220 94747 07399 37408 48509 23929 27482 45476 85244 35159 

00115 31751 57260 68980 05339 15470 48355 88651 22596 03152 19121 
00116 88492 99382 14454 04504 20094 98977 74843 93413 22109 78508 
00117 30934 47744 07481 83828 73788 06533 28597 20405 94205 20380 
00118 22888 48893 27499 98748 60530 45128 74022 84617 82037 10268 
00119 78212 16993 35902 91386 44372 15486 65741 14014 87481 37220 



Appendix F Table of Probabilities for the 
Kruskal-Wallis One-Way 
ANOVA by Ranks* 

Sample Sizes 

p 

Sample Sizes 

p 
 

n i  n, n, H n 1  n2 n 3 H 

2 1 1 2.7000 .500 4 3 2 6.4444 .008 
6.3000 .011 2 2 1 3.6000 .200 5.4444 .046 
5.4000 .051 2 2 2 4.5714 .067 4.5111 .098 

3.7143 .200 

3 1 1 3.2000 .300 
4 3 3 6.7455 .010 3 2 1 4.2857 .100 6.7091 .013 

3.8571 .133 5.7909 .046 
5.7273 .050 

3 2 2 5.3572 .029 4.7091 .092 
4.7143 .048 4.7000 .101 
4.5000 .067 
4.4643 .105 4 4 1 6.6667 .010 

6.1667 .022 3 3 1 5.1429 .043 4.9667 .048 
4.5714 .100 4.8667 .054 
4.0000 .129 4.1667 .082 

4.0667 .102 3 3 2 6.2500 .011 
5.3611 .032 
5.1389 .061 4 4 2 7.0364 .006 
4.5556 .100 6.8727 .011 
4.2500 .121 5.4545 .046 

5.2364 .052 
3 3 3 7.2000 .004 4.5545 .098 

6.4889 .011 4.4455 .103 
5.6889 .029 
5.6000 .050 4 4 3 7.1439 .010 
5.0667 .086 7.1364 .011 
4.6222 .100 5.5985 .049 

5.5758 .051 4 1 1 3.5714 .200 4.5455 .099 
4.4773 .102 

4 2 1 4.8214 .057 
4.5000 .076 4 4 4 7.6538 .008 
4.0179 .114 7.5385 .011 

5.6923 .049 

continued 

* Adapted and abridged from W. H. Kruskal and W. A. Wallis. 1952. Use of ranks in one-criterion 
variance analysis. Journal of the American Statistical Association 47, pp. 614-617, with the kind per-
mission of the authors and the publisher. (The corrections to this table given by the authors in 
Errata. Journal of the American Statistical Association 48, p. 910, have been incorporated.) 
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Sample Sizes 

p 

Sample Sizes 

p n 1 nz n 3  H n i  n 2 n 1 H 

4 2 2 6.0000 .014 5.6538 .054 
5.3333 .033 4.6539 .097 
5.1250 .052 4.5001 .104 
4.4583 .100 
4.1667 .105 5 1 1 3.8571 .143 

4 3 1 5.8333 .021 5 2 1 5.2500 .036 
5.2083 .050 5.0000 .048 
5.0000 .057 4.4500 .071 
4.0556 .093 4.2000 .095 
3.8889 .129 4.0500 .119 

5 2 2 6.5333 .008 5.6308 .050 
6.1333 .013 4.5487 .099 
5.1600 .034 4.5231 .103 
5.0400 .056 
4.3733 .090 5 4 4 7.7604 .009 
4.2933 .122 7.7440 .011 

5.6571 .049 
5 3 1 6.4000 .012 5.6176 .050 

4.9600 .048 4.6187 .100 
4.8711 .052 4.5527 .102 

4.0178 .095 5 5 1 7.3091 .009 
3.8400 .123 6.8364 .011 

5.1273 .046 
5 3 2 6.9091 .009 4.9091 .053 

6.8218 .010 4.1091 .086 
5.2509 .049 4.0364 .105 
5.1055 .052 
4.6509 .091 5 5 2 7.3385 .010 
4.4945 .101 7.2692 .010 

5.3385 .047 
5 3 3 7.0788 .009 5.2462 .051 

6.9818 .011 4.6231 .097 
5.6485 .049 4.5077 .100 
5.5152 .051 
4.5333 .097 5 5 3 7.5780 .010 
4.4121 .109 7.5429 .010 

5.7055 .046 
5 4 1 6.9545 .008 5.6264 .051 

6.8400 .011 4.5451 .100 
4.9855 .044 4.5363 .102 
4.8600 .056 
3.9873 .098 5 5 4 7.8229 .010 
3.9600 .102 7.7914 .010 

5.6657 .049 
5 4 2 7.2045 .009 5.6429 .050 

7.1182 .010 4.5229 .099 
5.2727 .049 4.5200 .101 
5.2682 .050 
4.5409 .098 5 5 5 8.0000 .009 
4.5182 .101 7.9800 .010 

5.7800 .049 
5 4 3 7.4449 .010 5.6600 .051 

7.3949 	 .011 4.5600 .100 
5.6564 	 .049 4.5000 .102 



Answers to Selected Exercises 

Chapter 2 

2.1 	 Simple random sample 

2.2 	 Stratified random sampling 

2.3 	 a. Systematic sampling 
b. Yes, if the variable you are sampling has periodic variation 

2.4 	 a. 7683 persons enrolled in the Honolulu Heart Study, 1969 
c. Statistic 
d. Parameter 

2.5 	 a. A parameter is a characteristic of a population and a statistic is a characteristic 
of a sample. 

c. A simple random sample is one in which each member of the population has had 
an equal chance of being selected. This is usually done with the aid of a ran-
dom number table. 
A convenience sample is one in which a selected number has not been given an 
equal chance of being selected. The selected members are included because of 
some characteristic other than a chance mechanism. 

2.7 	 a. The population is the entire list of 83 individuals with their blood pressure 
readings. The sample of 10 is those selected by use of the random number 
table. 

b. The population is the entire list of 7683 individuals in the Honolulu Heart 
Study Population. Data for a sample of 100 individuals are shown in Table 3.1. 

Chapter 3 

a. Education qualitative b. Weight continuous 
Weight quantitative Height continuous 
Height quantitative Blood glucose continuous 
Smoking qualitative Serum cholesterol continuous 
Physical activity qualitative Systolic blood continuous 
Blood glucose quantitative pressure 
Serum cholesterol quantitative Ponderal index continuous 
Systolic blood 

pressure 
Ponderal index 
Age 

quantitative 

quantitative 
quantitative 

Age continuous 

3.1 

300 
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c. Education 	 bar chart or pie chart 
Weight 	 frequency polygon or ogive 
Height 	 frequency polygon or ogive 
Smoking 	 bar chart or pie chart 
Physical activity 	 bar chart or pie chart 
Blood glucose 	 frequency polygon or ogive 
Serum cholesterol 	 frequency polygon or ogive 
Systolic blood pressure frequency polygon or ogive 
Ponderal index 	 frequency polygon or ogive 
Age 	 frequency polygon or ogive 

3.2 	 Diastolic blood pressure 	 quantitative continuous 
Sex 	 qualitative 
Diet status 	 qualitative 

3.3 	 The shape is approximately symmetrical. The distribution of smokers and non- 
smokers would not be similar. Smokers' distribution would have a slight posi-
tive skew. 

3.4 	 Extreme values are to the left in a negatively skewed distribution and to the right 
in a positively skewed one. 

3.8 	 a. Bar graph 
b. Frequency polygon 
c. Pie chart 
d. Line graph 

3.9 	 Stem-and-leaf display: 

Frequency 
40-49 7 9 	 2 

50-59 0 1 2 2 2 2 3 3 5 5 5 5 5 6 6 6 6 7 7 8 8 8 9 9 9 9 9 9 9 9 	 30 

60-69 00000111111111122234455566666666677888888 	 41 

70-79 000000111333335557778 	 21 

80-89 0 0 2 3 6 	 5 

90-99 1 	 1 

Total 100 

a. The smallest is 47, largest is 91. 
b. 61 

3.11 
	

Frequency 

150-154 0 2 2 2 2 2 2 4 4 	 9 

155-159 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 7 9 9 9 9 9 	 22 

160-164 0000000000000001111222222222444 	 31 

165-169 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 7 7 9 	 24 

170-174 00000000011223 	 13 

175-179 5 	 1 

Total 100 

a. The smallest height is 150 and the largest is 175. 
b. The most frequent is 165. 



02 Answers to Selected Exercises 

40 

30 

20 

10 

3.13 

24 3 

a. 

40 5 

Smokers 

32.4 

(n = 37) 

40 

30 

20 

10 

2.7 

25.4 
27 

17 

b. 

19 

12 

12.7 

Nonsmokers 

15.9 

(n = 63) 

15 12 16 9 10 8 I 

1 	 2 	 3 	 4 	 5 	 1 	 2 	 3 	 4 	 5 

Educational level 
	

Educational level 

c. There is a higher proportion of nonsmokers with a high school (#4) and tech-
nical school (#5) education level. 

3.15 	 Pie chart 

3.17 a. Frequency Table of Weight Loss (in pounds) of 25 Individuals Enrolled in a 
Weight-Control Program. 

Weight Loss (lb) f 

1-3 3 12 
4-6 6 24 
7-9 9 36 

10-12 7 28 
13-15 0 0 

25 100 
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b and c. 

30 

20 

10 

3 	 6 	 9 
Weight loss (Ibs) 

40 

12 15 

d. The distribution appears to be negatively skewed. A possible interpretation is 
that there are more individuals with small losses than large losses. 

e. The most common weight loss was 9 lb. 

Chapter 4 

In 24 

	

4.1 	 Mean =
n 	 6 

= = 4 

Median = 4 
Mode = 5 
Range = 8 — 1 = 7 

(x — 42  32 
Variance = --

n — 1 
= 

5
-- = 6.40 

Standard deviation = Yvariance = 2.53 

	

4.3 	 Range = 102 — 40 = 62; median = 72; mode = 70 

	

100s 	 100(5.60) 

	

4.7 	 a. CV
H  = 
	

161.75 = 3.46 

100s 100(8.61)  
CVw  = 	 — 64.22 = 13.41 

b. Weight is approximately four times larger. 

13,010 

	

4.8 	 a. x 	 = 
100 	

130.10 

1,737,124 — 1,692,601 
S 2 = 	

99 	
= 449.73 	 s = 21.21 

b. 108.89, 151.31 
c. 87.68, 172.52 
d. 66.47, 193.73 
e. 68.3%, 95.4%, 99.7% 

4.10 Variance = s2  = (38.82) 2  = 1506.99 



5 	 10 	 15 

304 	 Answers to Selected Exercises 

4.14 	 a. i. 138,190,128,152,134,108,118,138,108,126,176,112,92,152,98,112,120,140,94, 
150,144,156,140,150,162 

ii. 116,130,136,134,162,162,118,142,104,140,142,112,116,134,108,114,154,128, 
116,140,122,122,172,128 

Ex 3338 
= 133.52 

n 	 25 

"Ex 2  — (Ex)2, 	 /460,748 

	

S1 	 , I 	  
N 	 n — 1 	 \I 
Ex 3152 

= 
n 

= 24 =- 131.33 

Vx 2  — (142  'n 	 [421,472 

	

S2 	
n — 1 \i  

b. The first set has the larger standard deviation: 25.05 — 18.07 = 6.98. 
c. The first set of observations is more dispersed than the second. 

4.16 The median remains the same, 3.5, and the mean and standard deviation both be-
come smaller. 

21.21 

	

4.18 a. CV = 	 x 100 = 16.3% 
130.1 
38.82  

b. CV =x 100 = 17.9% 
216.96 

c. The CV for blood pressure is somewhat less than the CV for cholesterol. The 
CV is a unit-free measure. 

4.20 a. Negatively skewed 
b. Positively skewed 
c. Symmetric 

4.23 o-  = Vo-2  = V144 = 12 

4.25 a. If the mean = median = mode, then the frequency distribution is symmet-
rical. 

b. If mean = 15, median = 10, and mode = 5, then the frequency distribution 
would be positively skewed. 

Ex 
4.26 The sample mean x 	 - is based on the sample size n and the population mean 

x  
= 	 is based on the entire population N. 

, — 445,689.76 
24 

v = 	 627.43 = 25.05 

— 413,962.67 , 
- v326.49 = 18.07 

23  
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Chapter 5 

	

5.1 	 ITT, TH, HT, 1-11-11 

P(OH) (DO 

P(1H) = ( 12)0 	 = 
P(2H) — (2')(21 ) 

	

5.3 	 ITTT, TTH, THT, THH, HTT, HTH, HHT, HHH} 
a. P(2H) = .38  
c. P(at most 2H) = ; 

	

5.4 	 {GGG, GGB, GBG, GBB, BGG, BGB, BBG, BBB} 
a. P(2B + 1G) = 
c. P(OG) = 
e. P(2B followed by 1G) = . Note that (a) does not consider order. 

5 
a. P(sum 8) = 

36 
d. P(sum 7 and both dice < 4) = 0 

10 + 15 25 
75 

1 
3 

a. P(O or R) 
10 + 30 

55 	 11 
c. P(not B) = 	 = 

75 	 15 
60 

e. P(R, W, or B) = 	 =- 
75 

+ 20 

4 
5 

+ 15 

P(white mouse in 10 hours) = 17  • P (black 
0' 

X 9 	 63 
a. P(both alive) = 

\ 10 	 10) 	 100 
9 

b. P(black alive and white dead) = 
10/ 

	

7 	 9 	 63 
d. P(at least one alive) = 

	

10 + 10 	 100 

18 + 22 

9 
mouse in 10 hours) 

1 0 

27 
10 / 	 100 

97 
100 

40 
83 

a. P(vegetarian) 
18 + 22 

18 
c. P(male vegetarian) = 

+ 20 + 23 

5.11 	 a. P(completed high school) = 
100 

c. P(physically inactive) = 
100 

9 
e. P(serum cholesterol > 250; systolic blood pressure > 130) =  

100 

5.7 

5.8 

5.9 

5.10 

19 

49 

5.12 	 5! = 120 
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10! 	 3,628,800 

	

5.13 	 P(10,4) = 
	
= 5040 

(10 - 4)! 	 720 

9! 	 362,880 
C(9,5) = 51 ( 9  _ 5)! - (120)(24) 

	

5.15 	 126 

	

6! 	 720 _ 

	

5.16 	 b. C(6,4) = 15 
4!(6 - 4)! 	 24(2) 

P(n,r) > C(n,r) because order is considered. 

	

10! 	 3,628,800 

	

5.17 	 C(10,4) = 	 = 210 = C(10,6) 
4!(10 - 4)! 	 (24)(720) 

5! 	 2 	 120 	 3 	 2  

	

5.18 	 a. P(3 out of 5) = 3 , (5  _ 3)1  (.5)3 (1 	 .5) ----- 6(2)  (.5) (.5) 

= .3125 
! 

c. P(at most 1) = P(0) + P(1) = .03125 +
1!(5 - 1)! (.5)1(5)4 

= .03125 + .15625 = .1875 
= 20; p = .25 

	

5.19 	 a. P(3) = .1339 
c. P(< 3) = 1 - 	 3) = 1 - .9087 = .0913 

	

5.20 	 n = 10; p = .1 
a. P(10) = 0 
c. 	 3) = 1 - (.3487 + .3874 + .1937) = .0702 

	

5.21 	 n= 12; p = .25 
a. P(4) = .1936 
c. 	 4) = 1 - .6488 = .3512 

5.22 10 males, 15 females; P(M smoke) = z, P(F smoke) = 
a. [P(4 of 10 M smoke) = .2051 and P(6 of 15 F smoke) --- .1786] 

P(4M and 6F) = (.2051)(.1786) = .0366 
c. [P(0 of 10 M smoke) = .0010 and P(0 of 15 F smoke) = .0023] 

P(OM and OF) = (.0010)(.0023) = .0000 

432 

	

5.25 	 a. P(A) = 	 = .1060 
4075 

b. P(B) = 	 = .1885 
768

075 
P(A  and B)42'4075 .0103 = 0972 

c. P(B ►  A) = 	
P(A)= 

.  
1060 = .1060 

d. Because P(B) 	 P(B I A) (that is, .1885 	 .0972), events A and B are not inde- 

pendent. 



5.27 

Class Interval 
Nonsmokers 

90-109 10 
110-129 24 
130-149 18 
150-169 9 
170-189 2 
190-209 0 

Total 63 

Smokers 
Total 

	

5 	 15 

	

15 	 39 

	

10 	 28 

	

3 	 12 

	

2 	 4 1 6  

	

2 	 2 

	

37 	 100 

63 
a. P(A) = 	  = .63 

100 
37 

b. P(B) =
100 

 = .37 

6 
c. P(C) = 	  = .06 

100 
P(C and A) 2/100_ 

d. P(C I A) = 

	

P(A) 	 .63 

e. P(C 1B) = 
P(C and  B) 4/100 

P(B) 	 .37 
The conditional probability of selecting someone with a blood pressure > 170 
from smokers is three times that of selecting someone from nonsmokers. Be-
cause P(C B) # P(C) (that is, .1081 # .06), smoking status and blood pressure 
are not independent. 

= .1081 

= .0317 
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Chapter 6 

	

6.1 	 a. .4911 c. 2(.4678) = .9356 e. .4990 

	

6.2 	 a. .5 - .4582 = .0418 c. 5 - .4946 = .0054 e. 0 

	

6.3 	 a. 1.645 c. ±1.96 e. ±1.645 

	

6.4 	 a. 1.645 c. 0 

	

6.5 	 a. For 40%, Z 1  will be ± 1.282; 
for 45%, Z2  will be ± 1.645. 

b. x = 	 Z 0" = 130 _± 1.282(17); x = (108.2, 151.8) 

	

6.6 	 a. Z 1  = (x - 1.) / o- = (45 - 60)/10 = -1.5 
Z2  = (75 - 60)/10 = 1.5; area = 2(.4332) = .8664 = 86.6% 

c. <50 Z = (50 - 60)/10 = -1; area = .5 - .3413 = .1587 = 15.9% 
e. X75 Z = (75 - 60)/10 = 1.5; area = .5 - .4332 = .0668 = 6.68% 

	

6.8 	 Mean = 75, cr = 8; 90th percentile; Z = 1.28 
1.28 = (x - 75)/8; x = (1.28)8 + 75 = 85.24 = 86% 



308 	 Answers to Selected Exercises 

6.9 	 Mean = 50, a- = 12 
P(x < 35) = (35 — 50)/12 = —1.25; area = .5 — .3944 = .1056 

6.10 a. The standard normal distribution has a mean = 0 and SD = 1.0. Other distri-
butions have a variety of means and standard deviations. 

b. Because the area is easily obtained for the standard normal distribution 

6.12 a. x = 55; SD = 6 
65 — 55 10 

Z = 	 =- 	 = 1.67 
6 	 6 

P(Z) > 1.67 = .5 — .4525 = .0475 

55 65 
0 	 1.67 

A little less than 5% will live another 65 years. 
b. That life expectancy is normally distributed 

6.15 Eliminating the 5% of students with the highest IQs and the 5% with the lowest 
IQs is equivalent to retaining students within ± 1.6450- of the mean; that is, 

x 	 75.3 

x — 100 
Z 

15 
x — 100 

Z = 
15 

100 

Z(15) — 100 = x = 124.7 

Z(15) — 100 = x = 75.3 

124.7 

The lowest IQ for remaining students would be 75 and the highest IQ for re-
maining students would be 125. 

6.17 x = 4.7G 	 SD = .8G 
Prob (of pilot with < 3.5G) 

	

Prob (of Z 
= 3.5 — 4.7 	

—1.2=1.5). 
.8 	 .8 
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3.5 	 4.7 
Z 	 -1.5 	 0 

Area = .5 - .4332 
= .0668 

Chapter 7 

	

7.1 	 n = 36, = 130, = 17 
Follows an approximately normal distribution with a mean equal to the popula-
tion mean and a standard deviation of cr/V' 

	

7.2 	 n = 25, /..t = 60, a-  = 10 
a. P(57 < x < 63); Z 1  = (57 - 60)/(10/5) = -1.5, A = 2(.4332); 

Z2 = (63 - 60)/2 = 1.5, A = .8664 = 86.6% 
c. P(x > 61); Z = (61 - 60)/2 = 0.5; A = .5 - .1915 .3085 = 30.9% 

	

7.5 	 = 50, a-  = 12 
12 

a. SEW = 	 = 3 
V16  

c. SEW decreases when n increases. 

	

7.6 	 = 71, a = 5, n = 15 
a. P(x 77); Z = (77 - 71)/(5/V15) = 4.65; A = .999 
b. P(65 < x < 75) 

Z = 
65 - 71 

= -4.65; A = .999 
5/ V15 

Z = 
75 - 71 

= 3.099 
5/V15 

	

7.7 	 g = 52.5; a-  = 4.5; P(x > 56) 
a. n = 10; Z = (56 - 52.5)/(4.5/V10) = 2.460; A = .0069 

7.8 	 pc = 3360, cr 
a. Z1  = (2300 

Z2  = (4300 
c. Z = (5000 

490 
- 3360)/490 = -2.1633, 
- 3360)/490 = 1.9184; A = .9572 

- 3360)/490 = 3.3469; A = <.001 

7.9 	 b. Z 1  = (3100 - 3360)/(490/V49) = 3.7143; A = 1.0; 
Z2  = (3600 - 3360)/(490/V49) = 3.4286 

c. Z = (2500 - 3360)/(490/V49) = -12.2857; A = 0 

7.12 a. The distribution of observations is more variable than the distribution of sam-
ple means. The distribution of sample means has the same mean as the parent 
distribution, but it has a smaller variance. 

b. The standard deviation is a measure of variation of the individual's x's. The 
SE(x) is a measure of variation of a sample of x's expressed as x. Consequently, 
it is smaller. 
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c. In discussing the location of the individual x's, we would want to use the stan-
dard deviation. In trying to make inferences about the group (sample) mean, 
the x, we would want to use the SE(x). 

7.14 

7.16 

x = 220, a-  = 50, n = 49 

	

U50 	 50 
u 	 = 	 = 	 = 7.14 

Nin 	 v49 	 7 

	

200 - 220 	 -20 
Z = 	 = 	 2.80, Z = 

	

7.14 	 7.14 
-2.80 5_ P(Z) 	 2.8 = 2(.4974) = .9948 

x = 2400, o- = 400, n = 64 

240 - 220 
7.14 

20 
7.14 

= 2.80 

400 
Crx  V-64 50 

 a. P(x) > 2500 
2500 - 2400 

P(Z) =
50 	

= 2 

P(Z) > 2 is 5 - .4772 = .0228. 
b. 2300 	 P(x ) 15_ 2500 

-2 5_ P(Z) 	 2 
2(.4772) = .9544 

c. P(x) < 2350 
2350 - 2400 

< 
-50 

= - 1.0 P(Z) 
50 50 

P(Z) < -1 = .5000 - .3413 = .1587 

7.18 	 X = 128, 0 = 12 
a. 122 < P(x) < 134 

	

122 - 128 	 134 - 128 
< P(z) < 

12 	 12 
-6 6 
-12 < 13(z)  < 12 

-.5 < P(z) < .5 = 2(.1915) = .3830 
b. 122 < P(x) < 134 

122 - 128 	 134 - 128 
< P(Z) < 

12 V16 	 12 06 
6 	 6 

< P(Z) < 
3 	 3 
-2 < P(Z) < 2 = 2(.4772) = .9544 

c. The reason for the threefold difference in the probabilities of the events is that 
in (a) we are dealing with x—the individual blood pressure of a girl, and in 
(b) we are dealing with a much less variable entity: the x blood pressure based 
on a group of n = 16 girls. 
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7.20 x = 73, s 2  = 121 
a. P(80 < x < 100); Z 1  = (80 - 73)/11 = .64; Z2  = (100 - 73)/11 = 2.45; 

area = .4929 - .2389 = .254 
c. P(x > 90); Z = (90 - 73)/11 = 1.55; area = .5 - .4394 = .0606 

7.24 n = 100 	 x = 15 	 s = 40 	 SE(x) = 4 
160 - 150 10 

P (x < 160) or P(Z < 	 = 	 = 2.50) 
SE(x) 	 4 

P(Z < 2.50) < .9938 

7.25 The SE(x) = 
s 	 40 

= 	 = 40  = 4 
VT/ V100 10 

7.27 One could use the central limit theorem to justify performing a test of hypoth-
esis. 

Chapter 8 

8.1 	 .64 - .51 ± (1.96)(17) V'(1/30) + (1/27) 

.04 < 	 - /12  < .22 

8.3 	 b. The 95% confidence intervals are as follows: n = 25, 95% CI = 15.22 - 16.78; 

n = 36, 95% CI = 15.35 - 16.65; n = 49, 95% CI = 15.44 - 16.56; n = 64, 95% 
CI = 15.51 - 16.49. 

c. Shrink. As the sample size increases (assuming a random sampling procedure 
was used) the confidence intervals should get closer and closer to the actual 
population mean. 

8.5 	 1.1, = 200, x = 225, a- - = 16.67, n = 49, z = 1.96 
a. 95% CI of /1, = 225 ± (1.96)(16.67/V49) 

220.33 < ,u < 229.67 
n = [(1.96)(16.67)] 2 /102  = 10.67 ~ 11 

8.6 	 a. x = .33 
.25 = x - 3.00s 

= .33 - 3.00s 
s = .03 

25 40 

b. The 99% confidence interval formula for ,u is 99% CI for ,u = x ± is/tin 
.33 ± t(.03)/Vn 
Exact values for CI can be determined for a known value of n. 
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8.9 
Mean 

Male 	 74.9 	 12.0 	 38 	 s 2  = 131.51 
Female 	 71.8 	 11.0 	 45 

1 
3•10 	 2.64(11•47) 1 38 + 45 

-3.57 < 	 - 1.t 2  < 9.77 

8.10 	 x i  = 163.33 	 s 1  = 25.07 
x2  = 179.90 	 s2  = 33.87 

(25.07) 2(53) + (33.87) 2(50) 
s 	 = 29.67 

54 + 51 - 2 

1 1 	 1 
16.57 ± 2.63(29.67)N1 54  + 51  

1.33 < µ t - µ2  < 31.81 

8.12 	 a. 
n 	 [Za- )2  = (2.57(1.61 

d ) 	 0.5 	
= (8.22) 2  = 67.6 or 68 

b. 
n = ( o- ZV =__ (1.96(1 

05

.6))2  
d 	 \\ 	

= (6.27) 2  = 39.34 

8.14 95% CI for a 14.4 ± 2.262 (617) 
ol10 

= 14.4 ± 2.262(2.141) 
= 14.4 ± 4.8 
= 9.6 to 19.2 

8.16 a. 95% CI for µ t  - µ2 = 262 - 236 ± 2.01(49.5)VA + A 
= 26 ± 2.01(49.5)(.2828) 
= 26 ± 28.1 
= -2.1 to 54.1 

8.19 Male x = 236 	 Female x = 262 
s i  = 60 	 s 2  = 64 
n 1  = 25 n 2 = 25 

s;(n - 1) + s(n2  - 1) 
n i  + n2  - z 

/602(24) + 642(24) 
25 + 25 - 2 

= V3848 = 62 

1 
The 95% CI for ,u i  - ,u2  = x i  - 	 ( ± 1.282 sP  - + 1 - 

n l 	 n 2  

c, = 

= 236 - 262 ± 1.96(62 

= -26 ± 1.96 (62)(.178) 
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= -26 ± 1.96(11.048) 
= - 26 ± 21.65 
= 4.35 to 47.65 

So the 95% CI for ,u i  - ix, is 4.35 to 47.65. 

8.21 The 99% CI for 6 is 

Treatment A 	 Treatment B 

n = 27 1 	 n2  = 30 
xi  = 51cc 	 x2  = 64cc 	 sp  = -17 

2  010 S i  = 	 S; = .045 

The 99% CI for /-L, 	 1-12 = 
= x l  - x2 ± Z (01) (sp )V1n, + 1 ,/n2 

= .64 - .51 ± 2.58(.17)V1%30 + 1/27 
= .13 ± 2.58 
= .13 ± .4386(.2652) 
= 13 ± .4386 
= 13 ± .1163 
= 0.0137 to .2463 

b. The 99% CI for pi  - /12  = 262 - 236 ± 2.797(49.5)(2828) 
= 26 ± 39.2 
= -13.2 to 65.2 

Chapter 9 

9.1 	 a. 	 1.645 or 1.645 
c. -3.012 and 3.012 
e. -2.03 and 2.03 

9.2 	 a. Z test in (a) and (d) 
b. t test in (b), (c), and (e) 

9.3 

9.4 	 a. 	 1.96 and 1.96 
c. -2.576 and 2.576 
e. -1.6759 

9.6 	 a. Fail to reject Ho . 
c. Reject Ho . 
e. Fail to reject H o . 

9.7 	 p. = 85, n = 25, x = 80.94 
Z(.05) = -1.645; t(.05, n - 1 = 24); Ho : 	 85, H1 : p, < 85 

a. Z = 
80.94 - 85 

= -1.750 Reject Ho  and conclude that the boys were indeed 
11.6/V25 

underfed. 

a. Ho : 30, H1 . p, > 30 
d. Ho : p, 31.5, Hi : < 31.5 
e. Ho : = 16, H1 : p, 16 
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80.94 - 85 
b. t =-= -1.650 Fail to reject Ho  because t 	 -1.650 does not fall- 

12.3 v25 
beyond the critical value t = -1.711. 

16 - 15 

	

9.9 	 Exercise 8.2: Z = 	 = 2.50 	 p 	 2(.0062) = .0124 
2, V25 

225 - 200 
Exercise 8.3: Z = 	 = 10.50 	 p = .0000 

16.67/v49 
Exercise 9.7a: Z = -1.750 	 p = .0401 
Exercise 9.8: t = 4.72 	 p < 2(.005) = .01 

Exercise 9.17: t = 
73 - 7

-
0 

= 2.36 	 p < .01 
11.6, V83 

	

9.11 	 a. sp  = 11.55; a = .05; Ho; µv = /Inv ,  Hi: µv * gm, 
73.5 - 72.9  

t = 	 - - .236 
11.55 V (1/40) + (1/43) 

Fail to reject Ho, and state the evidence was insufficient to indicate a difference 
in mean blood pressures between the two groups. 

	

9.13 	 a = .05; Ho: = 15, Hi : kt, * 15 	 z = (16 - 15)/(2/V25) = 2.50 
Two-tailed test: z ± 1.96. Reject H o, and conclude that the mean hemoglobin level 
is significantly different (higher) in this sample from that of the population mean. 

	

9.15 	 a. paired t test 	 b. xd  = 275 - 260.6 = 14.4 
t(.99, 9) = -±3.25 	 Ho : mean difference between labs = 0 

Hi : mean difference * 0 

2486 - (144)2 /10 
S d  = v . 

	

9 	
- 6.77 

14.4 - 0 
t =   - 6.73 

6.77 , V10 

Reject Ho, and conclude that there is a significant difference between means of the 
two laboratories. 
c. t = (275 - 260.6)/20.62 V1, 10 + 1 10 = 1.56 

9.17 t = (73 - 70)/(11.6/V83) = 2.356 
Ho : ,u, 	 70, Hi :µ > 70 	 t(.01, 82, one-tailed) = 2.37 (df 80 used) 
Fail to reject Ho, and conclude that there is no significant difference in diastolic 
blood pressure. 

	

9.19 	 a. sp  = 29.67 
t = (163.33 - 179.90)/29.67 -01/54) + (1/51) = -2.861 

t(.05, 103, one-tailed) = -1.66 	 Ho : /iv  - ,u„„ > 0, 	 ,u„ - ,u,„„ < 0 
Reject Ho  in favor of Hi , and conclude that the mean cholesterol level of vegetar-
ians is significantly lower than that of nonvegetarians. 

	

9.21 	 a. The variance is the same in both populations. The Ho  states that the two means 
are the same. 

b. The basis for pooling the sample variances is that both populations are as-
sumed to have the same variance. 

9.23 	 a. 1. Ho : ,u i  - 112  = 0 
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2. a = .05 

= 1.29 
21.34(.2865) 

4. Critical region is area beyond ±2.01. (df = 48; df = 50 used). 
5. Because the computed t = 1.29 < 2.01, the critical value, we fail to reject the 

Ho, and conclude that the blood pressure is not significantly different be-
tween smokers and nonsmokers. 

1 	 1 
b. 95% CI for I.L 1  - kt2  = X4  - X2  ± tsp 	 + 	  

29 21 
= 7.9 ± 2.045(21.34)(.2865) 
=- 7.9 ± 12.5 = -4.6 to 20.4 

\125 + 25 
4. The critical region is the area beyond ± 2.01 (df = 48; df = 50 used). 
5. Because t = 1.86 falls in the fail-to-reject region, we fail to reject the Ho, and 

conclude that there is no significant difference at the a = .05 level. 
b. Because the 95% CI for A i  - p.2  = -2.9 to 54.9 includes zero, there is no sig-

nificant difference; that is, one reaches the same decision as in (a). 

9.27 	 a. Ho: 	 = /-4,2 	 H1: µ i 	 112• 

b. df = 140, a = .05, the critical value equals ±1.98. 
c. Independent 
d. t = 2.59 
e. Ho  should be rejected. There is evidence that the maximum daily alcohol con-

sumption of college males is greater than that of college females. 
f. 0.61-4.59 

Chapter 10 

10.1 	 a. Ho : p, i  = kt2  = /1,3  (mean number of children is same for all groups) 

b 	  
Source of Variation SS df MS F ratio 

Between 381.67 2 190.84 26.84 
Within 191.90 27 7.11 F 95(2,27) = 3.35 

Total 573.57 29 

X, 	 X2  0 	 133.14 - 125.24 - 
3. t = 

s, , 1 	 1 	 21.34, 11  + 1  
' n i 	 n 2 	 V 29 	 21 

7.9 

Yes, the decision reached would be the same: that there is no significant dif-
ference because zero is included in the interval. The decision has to be the 
same because both approaches use the same formula. 

9.25 	 a. 1. Ho: µ 1  - p,2  = 0 
2. a = .05 

	

262 - 236 -  0 	 26 
3. t = 	 - = 	 = 1.86 

14.0 
49.5 1 	 1  
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c. Reject H„, and conclude that the need for family planning counsel differs by 
the number of children per family. 

10.3 

Source of Variation 	 SS 	 df 	 MS 	 F ratio 

Between 	 8,290.62 	 2 	 4,145.38 	 23.92 
Within 	 3,118.33 	 18 	 173.24 	 F„(2,18) = 3.55 

Total 
	

11,414.95 	 20 

Reject Ho : µ l = ,u2  = 11 3 , and conclude that the mean ages of the three communi-
ties are different. 

10.5 a. In a one-way ANOVA, one is able to partition the variation into two sources 
and test one of them. In a two-way ANOVA, one is able to partition the varia-
tion into three sources and test two of them. 

b. That the observations are independent. Furthermore, that the observations 
of each group are normally distributed and that the variances of the various 
groups are homogeneous. 

c. H„: µ l = 11 2  = • • • = ilk  for a one-way ANOVA 
Ho:µl =112._..._ µk  

1.7 	 7.7 	 10.2 

1.7 
7.7 

10.2 

6.0 8.5 
2.5 

Because only 6.0 and 8.5 exceed 2.97, they are the only significant pairs at 
a = .05. 

b. HSD = 3.61 \173.24 7 = 3.61(4.975) = 17.96 

23.0 	 71.3 	 41.9 

	

23.0 
	

48.3 
	

18.9 

	

71.3 
	

29.4 
41.9 

Because all differences exceed the critical difference of 17.96, all pairs are signi-
ficantly different from each other at the a = .05 level. 

10.11 a. x = 	 x = 65 4 -  x = 37.8 

SS, = 35,483 	 (715)2 = 7081.6 
18 

for a two-way ANOVA 
Ho: 	 = 11-2 	 • • 	 /am = 	 =  

10.7 	 a. For a = .05: F 1,16  = 4.49; F316  = 3.24; F336  = 2.88 
b. For a = .01: F1,16  = 8.53; F316  = 5.29; F136  = 4.41 

10.9 a. HSD = q(a, k, N - k)\ 
MSW 
 n  = 3.53V7.10 10 = 3.53(.843) = 2.97 
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SSb  = 33,661.8 - 28,401.4 = 5260.4 

Source 	 SS 	 df 	 MS 	 F 

Between 5260.4 2 2603.2 21.4 
Within 1821.2 15 121.4 

Total 7081.6 17 

b. In MSB and the MSE, terms are both smaller, but the F statistic is still about the 
same. The three missing values made little difference on the overall outcome. 

10.13 a. SS, = 8299 - 7980 = 319 	 SS, = 319 - 116 - 143 = 60 
SS„ = 6(1352.01) - 7980 
SSb  = 8123 - 7980 = 143 

= 116 

Source SS df MS 

Treatment 132 2 66.0 13.75 
Blocks 139 5 27.8 5.79 
Residual 48 10 4.8 

Total 319 17 

b. Because 9.7 > F210  =- 4.1 at the a = .05 level, there is a significant difference in 
the recidivism of the three programs. 

c. Tukey's HSD is q(a, 3, 15)V-10/6 = 3.67(1.29) = 4.74. 

24.9 	 19.8 	 18.5 

	

24.9 	 5.0 	 6.3 

	

19.8 	 1.3 
18.5 

All differences are significant except B and C at the a = .05 level. 
d. Because 4.8 > F510  = 3.33 at the a = .05 level, it appears that weight also is in-

fluential in recidivism. 

10.14 A -F ratio is not possible. There is an error in the calculations. 

10.15 a. ANOVA Table 

Source SS df (MS) or 5 2  

Between 131.6 4 32.9 10.6 
Within 94 30 3.1 

Total 225.6 34 

b. The calculated F is 10.6. 
The critical F 05  at df (4, 30) is 2.69. 
The critical F 01  at df (4, 30) is 4.02. 
Your F ratio is significant at .05 and .01. 
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c. The q value from Appendix C is 4.10 for a .05 level of significance and 5.05 for 
a .01 level of significance. 
The critical HSD for a .05 level of significance is 2.69, and for a .01 level of sig-
nificance is 3.36. 
There is a significantly greater weight gain in the following pairs at a .05 level 
of significance: AB, AC, AE, BC, CD, CE. 
There is a significantly greater weight gain in the following pairs at a .01 level 
of significance: AC, CD. 

Chapter 11 

	

11.1 	 a. pi  (none) = 25/100 = .25 
P2 (primary) = 32/100 = .32 
p3  (intermediate) = 24/100 = .24 
p4  + p5  (high school and technical school) = 19/100 = 19 

c. p i  (mostly sitting) = .49; p2  (moderate) = .51; p 3  (much) = 0 

	

11.2 	 /.1. = n p = 7683(.37) = 2842.71 

= V npq = V7683(.37)(.63) = 42.32 

	

11.3 	 Ho : p H  = .31 
Hi - PH 	 . 31  
a = .05 
Critical region: Z > 1.96, Z < —1.96 

Z= PH7P  = -  .37  :31   - = 1.30 

	

Vpq n 	 V(.31)(.69) 100 
Fail to reject Ho , and conclude that the evidence is insufficient to indicate that 
the proportion of smokers in Honolulu is signficantly different from that in the 
United States in general. 

	

11.5 	 p i  = 4/7 = .57; p2  = 7/21 = .33 
4 +  7 

13 ' = 7 + 21 
= .39 

j.39)(.61) 	 (.39)(.61) 
sE(p, — P2) = 	 7 	 + 

21 
= .213 

Ho : p i  — p2  = 0 
Hi : p i  — p2  0 
a = .05 

.57 — .33 
Z = 	

.213 	
= 1.127 

Z(.025) =- It 1.96 
Fail to reject H. There is no difference in the proportion of smokers between the 
two groups. 
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)(.43) 
11.6 	 90"'(, Cl for p 1  — p2  = p, 	 p2  ± 1.645 \

1(.57 
 7 	 + 

= .24 ± .35 
= —.11 < - < .59 

(.33)(.67) 

21 

11.8 	 = 29/99 = .293 

99% CI for p = .293 ± 2.576 \i/(293)(707) 

= .293 ± .118 
= .175 < p < .411 

55 	 117 
'
P

I 	 219 	 *
251; P2  =142 

822 	 * 
a  = .01 

55 + 117 
P' = 

219 
.835 

+ 822 
= .165; q' = 

SE(P ' 

1(165)(835) 

P2)  = \I 	 219 

+ (.165)(.835) 

822 
= .028 

H0: Pi — p2  = 0 

.251 — .142 z 	

028 	

3.893 
	 Critical region is -±2.576 (for a = .01). 

 
Reject Ho, and conclude that there was a significantly higher proportion of those 
who started smoking at an earlier age among "abusers" than among "nonusers." 

11.12 a. 99% CI for 11.10 

1(.251)(749) 	 (.142)(.858) 

	

Pi — p2  = p, - p2  ± 2.576 AN/ 	
219 	 + 	 822 

= .109 ± .082 
= .027 < p l  — p2  < .191 

	

11.13 a. µ = 1177- 	 CT = vn7r(i — 
b. p is the estimate of the parameter 77". 

— 
c. The mean is 

x 
 and CTP 
	

,i7r(1 	 7r) 
= 

d. when nz- > 5 and n(1 — 7r) > 5 are satisfied 

11.15 a. p i  = 60 = 0.6 of males and p 2  = 70 = 0.7 of females 

	

100 	 100 

b. 99% CI for m 	 77.2 Pi — P2 
	 z  \i/P1( 1  — Pi) + P2( 1  — P2) 

n, 	 n 2 

1 .6(.4) 	 .7(.3) 
= 0.6 — 0.7 =_F-  2.58 

100 	 100 
= —.1 ± 2.58(.0671) = —.1 ± .17 
= —.27 to .07 

11.10 

c. Since the CI for m — 7r2  includes zero in its interval, the difference is not a sig-
nificant difference. 



43 	 22 
11.17 p i  = 	 = 0.43 	 p, = 	 = 0.22 

100 	 - 	 100 
43 + 22 	 65 _ 	 = 0.33 

100 + 100 200 

SE(p i 	 p2) = 	
.33(.65) 	 .33(.65) _ 

100 + 100 
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\-00429 = 0.0655 

1. Ho : 77- 1  - 7T2  = 0 	 H i : 77-  - 77-2  = 0 

2. a = .01 
p i  - p, - 0 	 .21 

	

_ 	 _ 
3. Z = 	 = 3.16 

SE(p i  - p2) 	 .0665 
4. Critical region is area beyond 2.58 
5. Because 3.16 > 2.58, we reject the Ho  of equality and declare that geographies 

appears to play a signficant role in allergies. 

11.19 P = 
13

0 = .13 and 95% CI for 77-  = .13 ± 1.96 v 
P(1 - P) 

n  
10 

1.13(.87) 
' 13  ± "6  \I 100 

= .13 ± 1.96(.0336) 
= .13 ± .066 
= 0.06 to 20 

Include a 95% CI for TT and indicate that workers have a significant toxic ex-
posure. 

11.20 a. Proportions for Oregon: Before 0.29, after 0.24 
Proportions for Washington: Before 0.28, after 0.29 

b. Oregon: p' = 1275 + 1023 divided by 4475 + 4168 = .266 	 SE = .01 
1-4: p i  - P2 = 0 
H i : p i  - p2  > 0 
a = .05 

.29 - .24 
Z = 	

01 	
= 5.00 

 
Z(.05) = 1.64 
Reject Ho. The proportion of fatally injured drivers, in Oregon, is lower after 
the enactment of the 0.08% law. 

1735 + 1582 
Washington: p' = 6184 + 5390 .

287 	 SE = .008 

Ho: - p2  = 0 
Hi: Pi  - p2  > 0 
a 	 .05 



Answers to Selected Exercises 	 321 

.28 - .29 
Z = 	 = - 1.25 

.008 
Z(.05) = 1.64 
Fail to reject Ho . The proportion of fatally injured drivers, in Washington, is 
not lower after the enactment of the 0.08?' law. 

Chapter 12 

12.1 	 a 	  
Smokers 	 Nonsmokers 

Observed Expected Observed Expected 

None 4 6.73 16 13.26 
Primary 15 10.78 17 21.22 
Intermediate 12 8.08 12 15.92 
Senior high 1 3.03 8 5.97 
Technical school 0 3.37 10 6.63 

H„: There is no association between smoking and educational level. 
a = .05 
X 2  = 14.17 
Azi5(df = 4) = 9.49 
Reject Ho . 

Smokers 	 Nonsmokers 

Observed Expected Observed Expected 

None 4 6.73 16 13.26 
Primary 15 10.78 17 21.22 
Intermediate 12 8.08 12 15.92 
Senior high and 
technical school 1 6.40 18 12.60 

a = .05 
x2  = 13.91 
x 20,(df = 3) = 7.81 
Reject Ho, and conclude that smoking is dependent on one's educational 
level-namely, smoking is less frequent among the more highly educated. 

12.3 	 a 	  

0 
Egg Consumption 

<1 2-4 Daily 

0 E 0 E 0 E 0 

Low 5 5.36 13 13.66 8 9.91 4 1.07 
Medium 4 6.79 20 17.30 14 12.55 0 1.36 
High 11 7.86 18 20.04 15 14.54 0 1.57 
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Ho: There is no association between egg consumption and age at menarche. 
a = .05 

= 14.59 
x -05 (df = 6) = 12.59 
Reject Ho, and conclude that age at menarche is dependent on one's level of 
egg consumption. 

b 

0 
Egg Consumption 

<I 2-7 

0 E 0 E 0 

Low 5 5.36 13 13.66 12 10.98 
Medium 4 6.79 20 17.30 14 13.91 
High 11 7.86 18 20.04 15 16.11 

Ho: There is no association between egg consumption and age at menarche. 
a = .05 
x 2  = 3.26 
x20,(df = 4) = 9.49 
Fail to reject Ho: The data do not refute the H11  of no association between age at 
menarche and egg consumption. 

12.4 	 a 	  
Smoking No Smoking 

Total 0 E 0 E 

Hypertension group 
Control group 

Total 

4 
7 

11 

2.75 
8.25 

3 
14 
17 

4.25 
12.75 

7 
21 
28 

Ho: pi  = p, (there is no difference in the proportion of smokers in the two 
groups). 
a = .05 
A 2  = 1.25 

x 205(df = 1) = 3.84 
Fail to reject Ho: The data do not refute the H11  of no association. 

12.5 

Heartbeat 

Age Interval 	 0 	 E 	 0 - E 
(0 - E) 2 

 

	

25-34 	 18 	 43.12 	 -25.12 	 14.63 

	

35-44 	 33 	 38.56 	 -5.56 	 0.80 

	

45-54 	 54 	 37.17 	 16.83 	 7.62 

	

55-64 	 48 	 30.42 	 17.58 	 10.16 

	

_ . 65 	 35 	 38.72 	 -3.72 	 0.36 

	

188 	 33.57 

140,195(188) 
E 	 = 43.13 

611,152 

E 
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Ho : The age distribution of the heartbeat group is the same as that of the MSA. 
a = .05 

X 2  = 33.58 and x215 (df = 4) = 9.49 
Reject Ho : The heartbeat age distribution is significantly different from the MSA 
age distribution. 

12.7 	 a. The basis is the probability multiplication rule. 
b. They are computed by multiplying the two marginal totals of the frequency 

and then dividing it by the total frequency. 

a b 	 25 , 10 	 2.5 
12.9 The odds radio is 	 = 	 = 	 = 9.1 

c d 	 14 /51 	 .2745 
The risk of developing heart disease among smokers is 9.1 times that of non-
smokers. 

12.11 RR = 
a / (a + b) 20:3299 
c/ (c + 	

1 /6701 = 40.6 

According to these data, the RR of developing lung cancer in smokers is 
40.6 times that of nonsmokers. 

12.13 

M 	 F 	 Total 

Overweight 	 15 	 36 	 51 	 a = .05 
Not overweight 	 85 	 64 	 149 	 Ho : Both groups are homegeneous 

Total 	 100 	 100 	 200 

2 	 200(15(64) 	 36(85)) 2  
X - 	 = 11.61 

100 • 100 • 51 • 149 

Conclusion: The two groups are not homogeneous at the .05 level because 
x -  = 11.61 > 3.84. 

12.15 a 
M 	 F 	 Total 

Belt 	 60 	 70 	 130 	 a = .01 
No belt 	 40 	 30 	 70 	 f I n : Sexes are homogenous. 

Total 	 100 	 100 	 200 

0, 	 2 0(60(30)  — 70(40)) 2  
X = 	 2.20 

100 • 100 • 130 • 70 

b. Because X 2  = 2.20 < 3.84, there is no significant difference in seat belt use be-
tween the sexes. 
2 (60 - 65)2  (70 - 65)2  (40 - 35)2  (30 - 35)2- +C. X -

65 	 65 	 35 	 35 	
= 2.20. They are the 

same. 
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12.17 

Substance Abuse Nigh Low Total 

Alcoholic Family 28 ll? 40 
Nonalcoholic Family 13 15 28 

Total 41 27 68 

= .05 
68((28)(15) — (13)(12)) 2  

= 	 = 3.82 
41 X 27 X 40 x 28 

Because x2  = 3.82 < 3.84, there is no significant difference in juvenile substance 
abuse between alcoholic and nonalcoholic families. 

Police Called to 
Family Violence 	 Home 1 or More Tinies No Police Calls 	 Total 

Alcoholic Family 25 15 40 
Nonalcoholic Family 6 22 28 

Total 31 37 68 

= .05 
68((25)(22) — (15)(6)) 2  

X = 	 = 11.2 
31 x 37 x 40 x 28 

Because x 2  = 11.2 > 3.84, there is a significant difference in the incidence of fam-
ily violence between alcoholic and nonalcoholic families. 

Left Alone 	 Not Left Alone 
Neglect 	 for Long Periods 	 for Long Periods 	 Total 

Alcoholic Family 5 35 40 
Nonalcoholic Family 8 20 28 

Total 13 55 68 

= .05 
681(5)(20) — (35)(8)) 2  

' 	 - = ?.75 
13 x 55 x 40 X 28 

Because ,y 2  = 11.2 > 3.84, there is no significant difference in the incidence of ju-
veniles left alone between alcoholic and nonalcoholic families. 

12.18 

Mutagen-Containing Meats 

0-1 Servings 2-3 Servings 4 or More Servings 

Race 0 E 0 E 0 E Total 

African American 
Whites 

Total 

68 
73 

 141 

77.2 
63.8 

36 
18 
54 

29.6 
24.4 

11 
4 

15 

8.2 
6.8 

115 
95 

 210 



• 
• 
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Ho : There is no relationship between race and the consumption of mutagen-
containing meats. 
a = .05 
x 2  = 7.60 
x 20 ,(df = 2) = 5.99 
Reject Ho : There appears to be a relationship between race and the consumption 
of mutagen-containing meats. 

12.19 a. The odds ratio is 3.8. 

Chapter 13 

	

13.1 	 a. Range —1 to 1 
b. The sign tells the direction of the slope. 
c. It tells the strength of the linear relationship. 
d. It tells how good the prediction is likely to be. 
e. Yes, they would have the same sign. No, they would not have the same mag-

nitude. 

3,371,580 — (15,214)(21,696) 100 

	

13.2 	 a. r = 	 - 
V2,611,160 — (15,214) 2  100 • V4,856,320 — (21,696) 2  100 
.336 

13.3 a. Plot of systolic blood pressure in row 3 (R3) versus cadmium level in row 1 
(RI): 

R3 
185 — • 

• 
150 — 

115 — • 

• • 
• 

• 
• • 

•  

• 

80   

•  

45 — 

35 	 50 	 65 	 80 	 95 	 110 

b. The plot does not support the notion that there is a strong linear relationship 
between the two variables. 

c. Correlation of R1 and R3 = 0.439 
d. Plot of zinc level in row 2 (R2) versus cadmium level in row 1 (RI): 
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R3 
180 — 

150 — 

120 • 
• 

90 — 

60 
I 	  R1 

35 	 50 	 65 	 80 	 95 	 110 

Correlation of R1 and R2 = .931 
e. Yes, since it appears to follow a straight line. 

f. b = 
94 ,517 — (823)(1516) 14 

= 1.936 
51,169 — [(823) 2 1 '14 

= 108.286 — (1.936)(58.786) 
= —5.523 

1.936x — 5.523 
g. F./ = 1.936(80) — 5.523 = 149.36 
h. No, because this is not possible to assess with this method. 

	

13.5 	 a. a = .05; r = .447; n = 14; —.10 < p < .77 
b. Because p = 0 is included in the confidence interval, we fail to reject the H o  of 

no relationship between cadmium and blood pressure. 

	

13.6 	 H0 : = 0; a = .05; b = 1.936 

232.363 	 1.936 — 0 
SE(b) 
	 \ 46,364.357 = . 071; t 	 . 071 	

= 27.3 

Reject H0, and conclude that the population regression coefficient is significantly 
different from zero. 

(15,214)(21,696) 
100 	 70,750.6 

	

13.7 	 b= 

21,696 
- bx = 	 — .2386 

100 
'15,21z0 

100 / 

296,502.1 

= 217 — 36.3 = 180.7 

3,371,580 

2,611,160 — (15,214)2 
100 

= 0.2386 
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= 180.7 + .2386x 
F1 ) : f.3 1  = 0 a = .01 

— 0 	 .2386 
t = 	 = 	 = 3.64 

SE(b) 	 .0656 
>.:y 2  — aly — bixy 

s- = 
n — 2 

4,856,320 — 181(21,696) — .2386(3,371,580) 
98 

= 1274.3 

SE(b) = Ai 
1274.3 

V 
V 296,502.1 	

V.004298 
 

= .0656 

Because t = 3.64 > than the critical t = 2.58, we reject the Ho  in favor of PI,: 0 1  t 0. 

13.9 a. To test Ho : p = 0 we need to make the following assumptions: 
i. The pairs were obtained randomly. 
ii. x and y must be normally distributed. 

b. To test Ho : = 0, we need to make the following assumptions: 
i. The means of each distribution of y's for a given x fall on a straight line. 
ii. The variances are homogeneous for each distribution of y's for each val-

ue of x. 
iii. The distribution of y's is normal for a given x. 

13.11 The limitations are 
i. it measures only straight-line relationships 

ii. it does not prove a cause-and-effect relationship 

(84)(2030) 
12 	 59.8 	 59.8 

= 0.919 
65.10 

169,140 — (6640)226) 
11 

" 	 11 
5 440 400 

66402 ) 
6018 — 2262 

11 ) 
_ 	 32,718 	 32,718 

	

"/(1,432,255)(1375) 	 44,377 	 0.7373  

The correlation coefficient of 0.73 is quite high, indicating a strong association 
of current death rates with cigarette consumption 20 years earlier. 
r 2  = .54 provides an estimate of the total variation in y that is explained by the 
variation in x. 

14,269.8 — 
13.13 a. r = 842 2030 2 	 V-(1.2)(3531.7) 

b. 	 \589.2 — 12 (346,940 — 
12 / 

95% CI for p = .70 to .96 

13.15 b. r = 
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0.7373 	 0.7373 
c. At a = .01, t = 	 . 	 = 3.26 

V(1 _ .54)/9 	 0.2261 
Because t = 3.26 > 3.25, the critical t value at the 1% level, there is a signifi-
cant correlation between current death rates and previous cigarette consump-
tion. 

13.19 If you had 105 correlations, you would expect that by chance alone, 5% or ap-
proximately 5 of the correlations would be significant at the .05 level of signifi-
cance. 

13.20 -.71. The closer you are to either -1.00 or 1.00, the stronger the correlation. Con-
versely, the closer you are to 0.00, the weaker the correlation. The weakest corre-
lation is .08. 

	

13.22 a. n = 25, .25-.80 	 11 = 50, .39-.75 	 11 = 100, .45-.71 

Chapter 14 

14.1 

Breast-Fed Not Breast-Fed 

No. Age Rank No. Age Rank 

1 14 10 1 9 4 
2 15 11 2 10 5.5 
3 12 7.5 3 8 3 
4 13 9 4 6 1.5 
5 19 12 5 10 5.5 

6 12 7.5 
7 6 1.5 
8 20 13 

= 49.5 W2 = 41.5 

R, = 9.90R, = 5.2 

a. Ho : Breast-fed babies have more cavities than, or the same number of cavities 
as, non-breast-fed babies. 

b. H I : Breast-fed babies have fewer cavities than non-breast-fed babies. 
9W - W 49.5 - 35 

c. = 35 	 u2w  = 46.67; o- I  = 6.83 	 Z = 	 = 	 = 2.12 
uv‘ 	 6.83 

One-tailed test: Z(.05) = 1.64 
Reject Ho  in favor of Hi  and conclude that breast-fed babies have fewer 
cavities. 

14.2 	 a. Vegetarians: W1  = 295; R I  = 16.4; n i  = 18 
Nonvegetarians: W2  = 408; R 2  = 21.5; n, = 19 

18(18 + 19 + 1) 
We  =

2 	
= 342; uw  = 32.9 

Z = (295 - 342)/32.9 = -1.43 
Because Z = 1.43 is less than Z(a = .05) = 1.96, we conclude there is no sig-
nificant difference in diastolic blood pressure between the two groups. 



14.5 Correlation of C11 and C22 = .736 
736v9 9 

t = 
V1-- (736)2  
3.262 

Two-tailed test: t(.975, 9) = 2.26 
a. Ho : There is no association between the cleanliness rankings of the two in-

spectors. 
b. There is an association between the cleanliness rankings of the two in- 

spectors. 
a = .05 
Because t = 3.262 is greater than t(.975, 9) = 2.26, we reject Ho  and conclude 
that there is a high correlation between the cleanliness rankings of the two in-
spectors. 
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14.3 a. Ho : The number of cavities for town A is the same as for town B. 
b. H I : The number of cavities for the two towns is different. 

c. 

Town A Town B 

Person # Cavities Rank Person # Cavities Rank 

1 0 1 1 3 15 
2 1 4 2 2 9 
3 3 15 3 2 9 
4 1 4 4 3 15 
5 1 4 5 4 19.5 
6 2 9 6 3 15 
7 1 4 7 2 9 
8 2 9 8 3 15 
9 3 15 9 4 19.5 

10 1 4 10 3 15 
W, = 69 W, = 141 
R, = 6.9 R 2 	 = 14.1 

We  = 105, o-w  = 13.2 
Since z = —2.73, which is less than —1.96, reject Ho . 

2,rd  = 55 	 Tait ,> = W I  = 51.5 
= 27.5 	 Ird( _ = W2  = 3.5 

51.5 — 27.5 

1/(20 + 1)27.5 / 6 
Because Z = 2.45 is greater than 1.96, we reject H o  in favor of H 1  and conclude 
that the two towns have different cavity levels; that is, the level is higher in the 
town with unfluoridated water. 
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Inspector Inspector Inspector Inspector 
(1) (2) ( 1 ) (2) 

Rank Rank 

Column: Cl C2 C11 C22 
Row Count: 11 11 11 11 

1 2. 1. 3.5 1.5 
2 3. 3. 6.5 7.0 
3 2. 3. 3.5 7.0 
4 3. 2. 6.5 4.0 
5 I. 2. 1.5 4.0 
6 4. 5. 9.5 11.0 
7 5. 4. 11.0 9.5 
8 3. 2. 6.5 4.0 
9 1. 1. 1.5 1.5 

10 3. 4. 6.5 9.5 
11 4. 3. 9.5 7.0 

14.7 a. For the Wilcoxon rank-sum test, we need to be able to rank the combined dis-
tribution of two separate samples. We must be able to assign ranks to each of 
the observations and list and sum separately the ranks for the two samples. 

b. For the Wilcoxon signed-rank test, we need a situation where we can obtain 
differences on each observation, as in a before-and-after situation. We then 
rank these differences according to the size of their absolute value, and then 
restore the original sign to each rank. There should be an equal number of pos-
itive and negative ranks if the Ho  is true. 

c. For the Spearman rank-order correlation coefficient, we need to have two ob-
servations on each item observed. We then obtain these ranks separately for 
the x's and the y's. Next we obtain the differences on the ranks and square and 
sum them. The smaller the sum, the larger the coefficient. 

	

6(13.5) 	 81 
14.9 	 a. r, = 1 - 	 - 	 1 	 = 0.94 

11(121 - 1) 	 1320 
b. Ho : There is no association between exercise and one's blood pressure. 
c. Hi : There is an association between exercise and one's blood pressure. 

.94 \ 9 	 2.82 
t = 	  = 	 = 8.3 

	

Vi1 - .942 	 0.34 
Because t = 8.3 > t t 99)  = 3.25 with 9 df, we reject the H„ in favor of HI  and con-
clude that the correlation coefficient is significantly different from zero. 

14.11 a. for 

A Total 
6! 

4! 
6! 

2! 1! 
5 • 
7 • 

5 • 
8 • 

2 • 
9 • 

3 • 4 
10 • 

5 • 
11 

6 
2 

25 
154 

4 2 
4 

6 
5 

5! 5! 
P - 

11! 4! 
P, = 0.162 

5 6 11 

30 
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and for 

A 

5 	 1 
()   

Total 

6 
5    

5! 5! 6! 6! 	 1 2 • 3 4 5 • 6 	 1 
P

2 
 = 

11! 5! 5! 0! 1! 	 7 • 8 • 9 • 10 • 11 	 77 

P2  = 0.013            
5 	 6 	 11 

so P I  + P2  = 0.162 + .013 = 0.175 and 2(.175) = .350 
a and b. Ho : The responses to A and B are the same. 
a = 0.5 
Because P = 0.35 > .05, we do not consider the response to be significant. 

14.13 W, = 125.5; We  = 143; Z = —1.36 
At a .05 level of significance, we fail to reject the null hypothesis. There is no dif-
ference between low-income African-American women and low-income white 
women, with respect to their consumption of meats. 

Chapter 15 

	

15.1 
	

1970: 205.1 million 
1980: 227.7 million 
1990: 250.4 million 

	

15.3 	 a. 196,000 
b. 421,000 

15.5 

Alaska 	 Kansas 

Birthrate 	 21.8/1000 	 15.0/1000 
Death rate 	 3.9/1000 	 8.9/1000 

	

15.6 	 (1) Diseases of the heart; (2) malignant neoplasms; (3) cerebrovascular diseases; 
(4) accidents; and (5) chronic obstructive pulmonary diseases 

	

15.7 	 1950: whites, 61.1 per 1000; nonwhites, 221.6 per 1000 (excludes Alaska and 
Hawaii) 

15.9 

Deaths 

Total 	 Infant 	 Neonatal 

Riverside 	 8438 	 170 	 101 
San Bernardino 	 8931 	 281 	 163 
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15.10 a. Alaska, 21.8 per 1000 population; Arizona, 18.7 per 1000 population 
b. The birthrate in Alaska is higher because of the higher proportion of the pop-

ulation in the child-bearing age group. 

15.11 The state with the highest birthrate in 1993 can be found in Table 93 of the Statis-
tical Abstract of the U.S. fir 1996. 
The state with the highest birthrate is Utah, with 20.00/1000; and the highest 
fertility rate is for Utah, at 85.9. 

15.12 The age-adjusted sex-specific death rate for cirrhosis of the liver can be found in 
Table 132. It is 18/1000 for men and 9.3/1000 for women. 

15.13 The cause-specific death rates for 1993 for the three states and the United States 
can be found in Table 133 of the same reference as in 15.11. 

Cancer Heart Disease Diabetics Accidents 

Michigan 203.5 302.6 22.3 30.3 
Utah 110.9 158.3 18.2 34.8 
Tennessee 217 314.3 21.7 48.1 
United States 205.6 288.4 20.9 18.8/1000 

15.15 The three states in 1993 with the highest HIV death rates were (see Table 133): 
New York with 37.4, New Jersey with 28.0, and California with 20.3. 

Chapter 16 

16.1 

16.4 

16.5 

16.6 

16.7 

Age 
Interval 	 1 , 	 it, T, 

	

70-75 	 67,638 	 11,282 	 310,551 

	

75-80 	 56,356 	 14,923 	 245,220 

	

80-85 	 41,433 	 15,036 	 168,072 

895,649 
585,098 
339,878 

13.24 
10.38 
8.20 

	

I t/0 	 1260 
a. Igo = 	 = .0126 

	

/„ 	 100,000 
d, )  = 1260 + 257 

c. 5 110 = 	 . 01517 

	

/„ 	 100,000  

b. a 	
1 ,435  = 851 + 1327 	 .

02277 I() ,35 	 = 
/35 	 95,641 

/L.;  = 76,540 _ . 7837 
 a. 45P20 	 /,'„ 	 97,668 

a. At birth, 0 = 73.62. 
c. At 35 years, 0 = 41.25. 
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significance, 138-139 

specific rates, vital statistics, 
246 

standard deviation, 48-51 
advantages of use, 51 
for binomial distribution, 

165 
coefficient of variation, 51 
computation of, 48-50 
pooled standard 

deviations, 111 
of a population, 52 
and variance, 49-50 

standard error of the 
difference, 110-111 

equation for, 111 
standard error of estimate, 

213 
standard error of the mean, 

96,98 
equation for, 96 
estimation of, 98 
principles of, 98 

standard mortality ratio, 257 
standard normal distribution, 

82-83 
standardized score. See Z 

score 
stationary population, 263 
statistic, meaning of, 15 
Statistical Abstract of the United 

States, 242 
statistical significance, 

meaning of, 130-131 
statisticians, role of, 2-3 
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atistics 
data sources, 5-11 
descriptive, 3 
descriptive statistics, 3 
examples of use, 3-4 
inferential, 3 
meaning of term, 2 
rationale for study of, 5 

eel and Torrie 1980,158,228 
em-and-leaf display, 34-35 
construction of, 34-35 

imulus variables, 6,7 
ocks 1944,279 
ratified sampling, 17 
udent's t distribution, 

98-100 
assumptions necessary for, 

101 
degrees of freedom, 99-100 
compared to normal 
distributions, 100 

robustness, 101 
t score, equation for, 99 

Irveys 
analytical, 9 
data from, 6 
descriptive, 9 
elements of, 6 
prospective surveys, 9 
retrospective surveys, 9 
rvival rate, computation of, 

268 
mmetrical distribution, 

frequency polygons, 33 
stematic sampling, 17,278 

lly, 29 
nur 1978,12 
rget population, 274 
listribution. See student's t 

distribution 
ephone interview, 275 
it of homogeneity, 182-184 
expected frequencies, 183 
steps in, 183-184 
its of significance 
basis for, 125 
of binomial proportion, 

166-168 
definition of, 124 
definition of terms in, 

123-124 

of difference between two 
proportions, 168-170 

one-tailed test, 129 
power of a test, 132-133 
and P value, 128 
relationship to confidence 

intervals, 135 
sensitivity, 138-139 
specificity, 138-139 
statistical significance, 

130-131 
steps in, 126-128 
test statistic, 126,127, 

133-134 
two independent samples, 

133-135 
two-tailed test, 128-129 
type I error, 131-133 
type II error, 131-133 

test statistic 
critical region of, 126 
meaning of, 123 
summary table for various 

parameters, 136 
in test of significance, 126, 

127,133-134 
Thomas 1955,11 
time at risk, mortality data, 

246 
treatment effects, 154 
treatment group, 9 
tree diagram, 58 
Tukey 1977,34 
Tukey's HSD test, 153-154 

computation of, 153-154 
HSD (honestly significant 

difference), formula for, 
153 

2 X 2 table 
elements of, 7 
two-by-two contingency 

tables, 185-187 
two independent samples 

comparison of groups, 
computations for, 110-111 

paired t test, 115-117 
tests of significance, 

133-135 
two-tailed test, 128-129 

versus one-tailed test, 128 
situation for use, 128 

type I error, 131-133 

example of, 132 
relationship to type II error, 

133 
type II error, 131-133 

example of, 132 
relationship to type I error, 

133 

United Nations 1990,245 
U.S. Department of Health, 

Education, and Welfare 
1971, 209 

U.S. Department of Health, 
Education, and Welfare 
1979, 4 

variables 
cause-and-effect 

relationship, 198 
variables (continued) 

chi-square test, 
independence between 
two variables, 180-182 

continuous variables, 27 
and correlation coefficient, 

202-210 
demographic variables, 241 
dependent variables, 200 
discrete variables, 27 
independent variables, 200 
and linear correlation, 

199-200 
and linear regression, 

199-200 
meaning of, 5 
outcome variables, 6 
pooled sample variance, 

111 
qualitative variables, 24 
quantitative variables, 24, 

27 
random variables, 68 
and regression analysis, 

210-216 
and Spearman rank-order 

correlation coefficient, 
232-233 

spurious associations 
between, 198-199 

stimulus variables, 6,7 
variance 

computation of, 50 
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49-50 
'nn diagram, construction 

of, 63-64 
'terans Administration 1970, 

6 
, terans Administration 1972, 

6 
tal and Health Statistics, 244 
tal statistics 
adjusted rates, 246 
birth registration, 242-243 
crude rates, 246 
death registration, 

242-243 
National Death Index, 243 
proportions, 246 

rate adjustment, 254-257 
rates for, 245 
ratios in, 246 
specific rates, 246 
uses of, 241 
Vital Statistics Report, 243 
Vital Statistics of the United 

States, 243 
See also demographic data 

Wilcoxon rank-sum test, 
223-226 

procedure in, 224-225 
Wilcoxon signed-rank test, 

226-228 
power efficiency of, 

227-228 
procedure in, 226-227  

Windle and Windle 1996, 
207 

Winslow et al. 1952,244 
within-group sum of squares, 

149 
within-group variance, 

meaning of, 147 

Yates continuity correction, 
186 

y-axis intercept, of regression 
line, 210— 212 

Z score, 81-82,83-86,169 
examples of, 83-86 
meaning of, 81-82 



Table A Areas Under the Normal Curve 0 	 Z 

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359 
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753 
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141 
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517 
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879 
0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224 

0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549 
0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852 
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133 
0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389 
1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621 

1. 1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830 
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015 
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177 
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319 
1.5 .4332 .4345 .4350 .4370 .4382 .4394 .4406 .4418 .4429 .4441 

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545 
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633 
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706 
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767 
2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817 

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857 
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890 
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916 
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936 
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952 

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964 
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974 
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981 
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986 
3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990 



e B Probability Between t t Value (Two-Sided) 

- 	 0.20 	 0.40 	 0.60 	 0.80 0.90 0.95 0.98 0.99 0.999 

Probability Below t Value (One - Sided) 

ec1 = 0.60 0.70 0.80 0.90 0.95 0.975 0.99 0.995 0.9995 

0.3250 0.7270 1.376 3.078 6.3138 12.706 31.821 63.657 636.619 

0.2885 0.6172 1.061 1.886 2.9200 4.3027 6.965 9.9248 31.598 

0.2766 0.5840 0.978 1.638 2.3534 3.1825 4.541 5.8409 12.924 

0.2707 0.5692 0.941 1.533 2.1318 2.7764 3.747 4.6041 8.610 

0.2672 0.5598 0.920 1.476 2.0150 2.5706 3.365 4.0321 6.869 

0.2648 0.5536 0.906 1.440 1.9432 2.4469 3.143 3.7074 5.959 

0,2632 0.5493 0.896 1.415 1.8946 2.3646 2.998 3.4995 5.408 

0.2619 0.5461 0.889 1.397 1.8595 2.3060 2.896 3.3554 5.041 

0.2610 0.5436 0.883 1.383 1.8331 2.2622 2.821 3.2498 4.781 

0.2602 0.5416 0.879 1.372 1.8125 2.2281 2.764 3.1693 4.587 

0.2596 0.5400 0.876 1.363 1.7939 2.2010 2.718 3.1058 4.437 

0.2590 0.5387 0.873 1.356 1.7823 2.1788 2.681 3.0545 4.318 

0.2586 0.5375 0.870 1.350 1.7709 2.1604 2.650 3.0123 4.221 

0.2582 0.5366 0.868 1.345 1.7613 2.1448 2.624 2.9768 4.140 

0.2579 0.5358 0.866 1.341 1.7530 2.1315 2.602 2.9467 4.073 

0.2576 0.5358 0.865 1.337 1.7459 2.1199 2.583 2.9208 4.015 

0.2574 0.5344 0.863 1.333 1.7396 2.1098 2.567 2.8982 3.965 

0.2571 0.5338 0.862 1.330 1.7341 2.1009 2.552 2.8784 3.922 

0.2569 0.5333 0.861 1.328 1.7291 2.0930 2.539 2.8609 3.883 

0.2567 0.5329 0.860 1.325 1.7247 2.0860 2.528 2.8453 3.850 

0.2566 0.5325 0.859 1.323 1.7207 2.0796 2.518 2.8314 3.819 

0.2564 0.5321 0.858 1.321 1.7171 2.0739 2.508 2.8188 3.792 

0.2563 0.5318 0.858 1.319 1.7139 2.0687 2.500 2.8073 3.767 

0.2562 0.5315 0.857 1.318 1.7109 2.0639 2.492 2.7969 3.745 

0.2561 0.5312 0.856 1.316 1.7081 2.0595 2.485 2.7874 3.725 

0.2560 0.5309 0.856 1.315 1.7056 2.0555 2.479 2.7787 3.707 

0.2559 0.5307 0.855 1.314 1.7033 2.0518 2.473 2.7707 3.690 

0.2558 0.5304 0.855 1.313 1.7011 2.0484 2.467 2.7633 3.674 

) 0.2557 0.5302 0.854 1.311 1.6991 2.0452 2.462 2.7564 3.659 

) 0.2556 0.5300 0.854 1.310 1.6973 2.0423 2.457 2.7500 3.616 

0.2553 0.5292 0.8521 1.3062 1.6896 2.0301 2.438 2.7239 3.5919 

) 0.2550 0.5286 0.8507 1.3031 1.6839 2.0211 2.423 2.7045 3.5511 

0.2549 0.5281 0.8497 1.3007 1.6794 2.0141 2.412 2.6896 3.5207 

1 0.2547 0.5278 0.8489 1.2987 1.6759 2.0086 2.403 2.6778 3.4965 

) 0.2545 0.5272 0.8477 1.2959 1.6707 2.0003 2.390 2.6603 3.4606 

0.2543 0.5268 0.8468 1.2938 1.6669 1.9945 2.381 2.6480 3.4355 

) 0.2542 0.5265 0.8462 1.2922 1.6641 1.9901 2.374 2.6388 3.4169 

) 0.2541 0.5263 0.8457 1.2910 1.6620 1.9867 2.368 2.6316 3.4022 
3.3909 

.) 0.2540 0.5261 0.8452 1.2901 1.6602 1.9840 2.364 2.6260 
3.3736 

3 0.2539 0.5258 0.8446 1.2887 1.6577 1.9799 2.358 2.6175 

0 0.2538 0.5256 0.8442 1.2876 1.6558 1.9771 2.353 2.6114 3.3615 
3.3527 

0 0.2538 0.5255 0.8439 1.2869 1.6545 1.9749 2.350 2.6070 
3.3456 

0 0.2537 0.5253 0.8436 1.2863 1.6534 1.9733 2.347 2.6035 
3.3400 

0 0.2537 0.5252 0.8434 1.2858 1.6525 1.9719 2.345 2.6006 
3.2905 

0.2533 0.5244 0.8416 1.2816 1.6449 1.9600 2.326 2.5758 

le data of this table are extracted with kind permission from Docurnenta Geigy Scientific Tables, 6th Ed., 

. 32-35, Geigy Pharmaceuticals, Division of Geigy Chemical Corporation, Ardsley, N.Y. 
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